首页|图模互补:知识图谱与大模型融合综述

图模互补:知识图谱与大模型融合综述

扫码查看
大模型(LLM)的兴起在自然语言处理领域引起了广泛关注,其涌现能力在各个垂直领域(如金融、医疗、教育等)也取得一定进展.然而,大模型自身面临解释性不足、知识实时性差、生成结果存在虚假信息等诸多挑战.为了应对这些问题,知识图谱与大模型的融合逐渐成为了研究热点.知识图谱作为一种结构化的知识模型,其真实性和可靠性,成为提高大模型解释和推理能力的有力工具.同时大模型具备语义理解能力,为知识图谱的构建和更新提供了有力支持.因此,知识图谱和大模型是互补的(本文称为图模互补).本文系统性地介绍知识图谱与大模型融合的方法,分别从1)大模型增强知识图谱,2)知识图谱增强大模型两个角度进行全面回顾和分析.最后,本文从医学诊断预测和时间知识图谱出发,介绍图模互补的领域应用,并讨论图模互补未来发展的方向,为知识图谱与大模型的进一步研究提供帮助.
KG-LLM-MCom:A Survey on Integration of Knowledge Graph and Large Language Model
The rise of the Large Language Model(LLM)has attracted wide attention in Natural Language Processing,and its emergent ability has also made some progress in various vertical fields(such as finance,healthcare,education,etc.).However,LLM faces numerous challenges,including inadequate interpretation,limited real-time knowledge,and the potential presence of false information in generated outcomes.In order to address these problems,integrating Knowledge Graphs(KG)and LLM has gradually become a research hotspot.As a structured knowledge model,KG has become a powerful tool for improving the interpre-tation and reasoning ability of LLM due to its authenticity and reliability.At the same time,LLM has the ability to understand se-mantics,which supports the construction and update of knowledge graphs.Therefore,KG and LLM are mutually complementary(KG-LLM-MCom is called in this article).The article provides a systematic introduction to KG and LLM integration methods.It conducts a comprehensive review and analysis from two perspectives:1)LLM-enhanced KG and 2)KG-enhanced LLM.Finally,the article introduces the field applications of KG-LLM-MCom from the viewpoint of Medical Diagnosis prediction and Temporal Knowledge Graphs.It discusses KG-LLM-MCom's future development direction,which can provide help for further research on KG and LLM.

large language modelknowledge graphnatural language processing

黄勃、吴申奥、王文广、杨勇、刘进、张振华、陈南希、杨洪山

展开 >

上海工程技术大学电子电气工程学院,上海 201620

达观数据有限公司,上海 201203

上海宝信软件股份有限公司,上海 201203

武汉大学计算机学院,湖北武汉 430072

中国科学院上海微系统与信息技术研究所,上海 200050

星环信息科技(上海)股份有限公司,上海 200233

展开 >

大模型 知识图谱 自然语言处理

科技部科技创新2030"新一代人工智能"重大项目上海地方能力建设项目上海市科技创新行动计划

2020AAA01093002101050150021DZ1204900

2024

武汉大学学报(理学版)
武汉大学

武汉大学学报(理学版)

CSTPCD北大核心
影响因子:0.814
ISSN:1671-8836
年,卷(期):2024.70(4)