首页|CMBA:基于复杂映射的神经网络后门攻击

CMBA:基于复杂映射的神经网络后门攻击

扫码查看
现有的大多数后门攻击研究仅考虑了 all-to-one等简单的后门映射策略,忽视了现实攻击场景中对其他更加复杂的映射策略的需求,限制了后门攻击的灵活性.针对这一问题,提出了映射策略可调的后门攻击框架,并在此框架下实现了一类基于复杂映射的后门攻击CMBA.引入了逃逸类别和多目标类别的设置,使CMBA攻击不仅能够精准地控制后门攻击的影响范围,还可以在不同原始类别和多个目标类别之间建立复杂的对应关系,提升了攻击的灵活性.实验结果表明,CMBA攻击在3个数据集上都展示了良好的攻击效果.此外,通过引入更多逃逸类别和目标类别,CMBA攻击获得了更好的隐蔽性能,能够成功绕过目前的一些主流后门防御的检测.
CMBA:Backdoor Attack of Neural Networks Based on Complex Mapping
Most existing research on backdoor attacks has primarily focused on simple backdoor mapping strategies,such as all-to-one mapping.This approach overlooks the need for more complex mapping strategies in real-world attack scenarios,thereby limiting the flexibility and effectiveness of backdoor attacks.To solve the problem,this article proposes a backdoor attack framework with an adjustable mapping strategy,and implements a backdoor attack based on complex mapping,called CMBA.By introducing evasion classes and the multi-target setting,CMBA can precisely control the attack scope,and establish complex correspondences between different original classes and multiple target classes,thereby improving the flexibility of attacks.The experimental results show that CMBA performs well on three datasets.In addition,by introducing more evasion classes and target classes,CMBA becomes stealthier and successfully bypasses the detection of several current mainstream backdoor defenses.

artificial intelligencedeep learningbackdoor attackmapping strategy

李学、何琨、陈晶、杜瑞颖

展开 >

空天信息安全与可信计算教育部重点实验室,武汉大学网络空间安全学院,湖北武汉 430072

武汉大学日照信息技术研究院,山东日照 276800

地球空间信息技术协同创新中心,湖北武汉 430079

人工智能 深度学习 后门攻击 映射策略

国家重点研发计划国家自然科学基金国家自然科学基金

2021YFB27002006207618762172303

2024

武汉大学学报(理学版)
武汉大学

武汉大学学报(理学版)

CSTPCD北大核心
影响因子:0.814
ISSN:1671-8836
年,卷(期):2024.70(4)