首页|块稀疏信号重构的广义正交匹配追踪算法研究

块稀疏信号重构的广义正交匹配追踪算法研究

扫码查看
在压缩感知理论中,将信号进行分块能够有效减少数据的处理量,提高信号的重构速度,因此块稀疏信号的稳定重构得到广泛研究.在l∞有界噪声环境下,研究得到了广义正交匹配追踪(Block generalized Orthogonal Matching Pursuit,BgOMP)算法下稳定重构块稀疏信号的停止迭代准则,并对其误差进行了分析,得到了迭代重构的信号非零块的有界性结果.
Research on Generalized Orthogonal Matching Pursuit for Block Sparse Signals Reconstruction
In compressed sensing theory,dividing signals into blocks can effectively reduce data processing requirements and improve signal reconstruction speed.Therefore,the stable recovery of block sparse signals has been widely studied in recent years.In this paper,we examine the stopping iteration criterion for stable recovery of block sparse signals using the Block generalized Orthogonal Matching Pursuit(BgOMP)algorithm when l∞ bound noise and discuss recovery errors;furthermore we get the boundedness results of nonzero blocks generated by the iteration.

block sparseblock restricted isometry propertyBgOMP algorithml∞bound noise

杨义芳、王金平

展开 >

宁波大学数学与统计学院,浙江宁波 315000

块稀疏 块限制等距性 BgOMP算法 l∞有界噪声

2024

武汉大学学报(理学版)
武汉大学

武汉大学学报(理学版)

CSTPCD北大核心
影响因子:0.814
ISSN:1671-8836
年,卷(期):2024.70(6)