首页|结合局部密度样本合成和类间插值的协同训练

结合局部密度样本合成和类间插值的协同训练

扫码查看
协同训练算法突破了单视角学习的局限,利用多视角特征学习两个分类器,相互补充、增益学习,以获得更好的分类性能.然而,有标记样本不足以及无标记样本无法有效利用的问题制约着协同训练算法性能的进一步提升.为了解决上述问题,提出一种结合局部密度样本合成和类间插值的协同训练算法.该算法先利用局部密度样本合成方法扩充有标记样本集完善数据的空间结构,得到性能较好的两个初始分类器;再利用K-means聚类算法对两个分类器预测类别不一致的无标记样本聚类,从中随机选取不同类别的样本插值生成新样本,将新样本分别加入到两个分类器中,将决策边界推离类边界,以获得大边距决策边界,重复该过程直至得到最终分类器.在12个UCI数据集上的实验结果验证了本文算法的有效性.
Co-Training Combining Sample Synthesis with Local Density and Inter-Class Interpolation
The co-training algorithm addresses the limitations of single-view learning by utilizing multi-view features to train two classifiers that complement each other and enhance learning performance.However,the lack of labeled samples and the problem of unlabeled samples not being effectively utilized restrict the further improvement of the performance of the co-training algorithm.In order to solve the above problems,a co-training algorithm combining local density sample synthesis and inter-class interpolation was presented.The algorithm first utilizes the local density sample synthesis method to expand the labeled sample set to improve the spatial structure of the data and obtain two initial classifiers with better performance.Then,the K-means clustering algorithm is used to cluster the unlabeled samples with inconsistent categories predicted by the two classifiers,and the samples of different categories are randomly selected to interpolate to generate new samples.These new samples are then added to each classifier,which pushes the decision boundary further from the class boundary to achieve a larger margin.This process is repeated until the final classifiers are obtained.Experimental results on twelve UCI datasets verify the effectiveness of the proposed algorithm.

co-traininglocal densitysample synthesisinterpolatedecision boundary

吕佳、王雨、李帅军

展开 >

重庆师范大学计算机与信息科学学院,重庆 401331

重庆市数字农业服务工程技术研究中心,重庆 401331

协同训练 局部密度 样本合成 插值 决策边界

2024

武汉大学学报(理学版)
武汉大学

武汉大学学报(理学版)

CSTPCD北大核心
影响因子:0.814
ISSN:1671-8836
年,卷(期):2024.70(6)