首页|基于Swin Transformer的无人驾驶路径规划算法

基于Swin Transformer的无人驾驶路径规划算法

扫码查看
无人驾驶车辆的行车路线规划存在着由于障碍物目标误识别问题,而导致行车路线的拟合出现误差.通过设计基于Swin Transformer网络的障碍物目标的实时识别,结合基于RRT*算法和贝塞尔曲线的路径拟合算法,提出了基于Swin Transformer的无人驾驶路径规划算法.以视频帧作为数据源,利用数据增强的方式构建障碍物图像数据集;在障碍物识别之后采用路径平滑优化完成路径规划.实验结果表明,使用本文算法进行路径规划的无人驾驶车辆的各项指标优于对比方法,且鲁棒性较好.
Swin Transformer-Based Unpiloted Path Planning Algorithm
Path planning for unpiloted vehicles often encounters route-fitting errors caused by the misidentification of obstacle targets.By designing the real-time recognition of obstacle targets based on the Swin Transformer network,combined with the path fitting algorithm based on the RRT*algorithm and Bessel curves,we design an unpiloted path planning based on the Swin Transformer.Use video frames as the data source and construct an obstacle image dataset by using data enhancement.Experimental results indicate that the proposed algorithm achieves superior performance across multiple metrics compared to baseline methods,demonstrating enhanced robustness in path planning for unpiloted vehicles.

unpilotedobject detectionSwin TransformerRRT*path planning

罗翔文、刘毅、向广利

展开 >

华中科技大学 武汉光电国家研究中心,湖北武汉 430074

武汉数字工程研究所,湖北武汉 430205

武汉理工大学计算机与人工智能学院,湖北武汉 430070

无人驾驶 目标检测 Swin Transformer RRT* 路径规划

2024

武汉大学学报(理学版)
武汉大学

武汉大学学报(理学版)

CSTPCD北大核心
影响因子:0.814
ISSN:1671-8836
年,卷(期):2024.70(6)