首页|基于Transformer特征通道融合的舌像分割

基于Transformer特征通道融合的舌像分割

扫码查看
针对舌像分割过程中,舌体边缘不连续,复杂背景干扰舌像等问题,提出一种基于Transformer特征通道融合的舌像分割方法.首先通过多级特征融合模块对舌像进行卷积,得到具有位置和特征信息的特征图;然后引入倒置特征金字塔网络模块匹配特征维度;最后将U-Net网络的跳跃连接替换成UCTransNet的CTrans模块,进行舌像的特征通道融合,减少背景信息特征的干扰,实现图像的准确分割.本文选取了 Dice值、平均交并比(MIoU)作为评价标准,通过在自采集的舌像数据集上进行训练评估和验证,Dice值为96.81%,MIoU值为93.89%.这表明本文方法在舌像数据集上具有较好的分割效果,可以准确提取舌体特征;本文方法可用于舌诊的标准化研究,提高舌诊的准确性和可靠性,且在其他医疗图像数据集上的泛化能力较强.
Tongue Image Segmentation Based on Transformer Feature Channel Fusion
To address challenges in tongue image segmentation,such as discontinuous tongue edges and interference from complex backgrounds,this paper proposes a traditional Chinese medicine tongue image segmentation method based on Transformer feature channel fusion.First,multi-level feature maps containing both positional and feature information are obtained through a multi-stage convolution module.Next,an inverted pyramid network is introduced to match the dimensions of the multi-level feature maps.Finally,the skip connections of the traditional U-Net network are replaced with the CTrans module of UCTransNet to capture contextual information in the image better and achieve accurate segmentation of medical images.Dice coefficient and mean intersection-over-union(MIoU)are selected as evaluation criteria.Training,evaluation,and validation on a self-collected dataset of tongue images yield a Dice value of 96.81%and an MIoU value of 93.89%,indicating strong segmentation performance.The proposed method has a good segmentation effect on the tongue image dataset,and can accurately extract the features of the tongue body.This method can be used for standardized research in tongue diagnosis,improving the accuracy and reliability of tongue diagnosis.Additionally,it demonstrates strong generalization capabilities on other medical image datasets.

deep learningimage segmentationTransformertongue diagnosis

薛玮珠、张博、姚瑶、熊玉洁、夏春明

展开 >

浙江机电职业技术学院智能制造学院,浙江 杭州 310053

上海工程技术大学 电子电气工程学院,上海 201620

深度学习 图像分割 Transformer 舌诊

2024

武汉大学学报(理学版)
武汉大学

武汉大学学报(理学版)

CSTPCD北大核心
影响因子:0.814
ISSN:1671-8836
年,卷(期):2024.70(6)