首页|基于IEKF的快速三维激光惯导耦合SLAM算法

基于IEKF的快速三维激光惯导耦合SLAM算法

扫码查看
针对激光SLAM累计误差大、计算耗时长的问题,提出一种基于迭代扩展卡尔曼滤波器(IEKF)的快速三维激光惯导耦合SLAM算法.首先,在前端部分构建惯性测量单元(IMU)运动学模型,将点云与局部地图直接匹配得到观测模型,引入ikd-Tree结构存储点云以减少寻找邻近点的时间.然后,采用IEKF求解,快速估计机器人初步位姿,得到激光惯性里程计.同时加入回环检测模块,并在后端利用因子图优化方法融合IMU积分因子、激光里程计因子和回环因子来消除累计误差,进一步提升系统精度.在M2DGR数据集上进行了算法验证,结果表明,与A-LOAM、LIO-SAM、FAST-LIO2算法相比,本文算法应用于室外大场景时的精度分别提升了21.738%、9.112%和6.750%.在真实环境中进行的实验也表明所构建的地图能准确、完整地反映出周围建筑物的几何结构特征.而且,该算法构建地图的效率显著优于A-LOAM和LIO-SAM算法,建图模块平均单帧运行时间少于19 ms.
Fast 3D laser inertial navigation coupled SLAM algorithm based on IEKF
A fast 3D laser inertial navigation coupled SLAM algorithm based on iterative extended Kalman filter(IEKF)was proposed to address large cumulative error and long computing time in laser SLAM.Firstly,an inertial measurement unit(IMU)kinematic model was constructed in the front-end,and the observation model was obtained by directly matching point clouds with local maps.The ikd-Tree structure was introduced to store point clouds to reduce the time for searching neighbor-ing points.Then IEKF was used to rapidly estimate the initial pose of the robot and get the laser inertial odometry.Meanwhile,a loop detection module was added,and the factor graph optimization was used in the back-end to integrate IMU integration factors,laser odometry factors and loop factors to eliminate the accumulated error and further improve the system's accuracy.This algorithm was validated by M2DGR dataset.The results show that,compared with A-LOAM,LIO-SAM,and FAST-LIO2 algorithms,the accuracy of the proposed one applied to large outdoor scenario is improved by 21.738%,9.112%,and 6.750%,respectively.Experiments in real environments also show that the map constructed by this algorithm can accurate-ly and completely reflect the geometric structural features of the surrounding buildings.Furthermore,the map construction effi-ciency of this algorithm is significantly better than that of A-LOAM and LIO-SAM,and the average running time per frame of the mapping module is less than 19 ms.

laser SLAMIEKFIMUikd-Treeloop detectionfactor graph optimization

廖雅曼、蒋林、刘焕钊、颜俊杰、王振宇

展开 >

武汉科技大学冶金装备及其控制教育部重点实验室,湖北 武汉,430081

武汉科技大学机器人与智能系统研究院,湖北 武汉,430081

激光SLAM 迭代扩展卡尔曼滤波器 惯性测量单元 ikd-Tree 回环检测 因子图优化

2025

武汉科技大学学报(自然科学版)
武汉科技大学

武汉科技大学学报(自然科学版)

北大核心
影响因子:0.38
ISSN:1674-3644
年,卷(期):2025.48(1)