首页|基于改进EEMD-MB1DCNN的船用柴油机缸套-活塞环故障诊断

基于改进EEMD-MB1DCNN的船用柴油机缸套-活塞环故障诊断

扫码查看
针对船用中高速柴油机缸套-活塞环振动信号非线性非平稳性以及同类型不同损伤程度故障发生时振动信号时频域特征相似、故障难以识别等问题,利用振动信号辨识故障,提出一种基于改进集成经验模态分解方法和多模块一维卷积神经网络端到端缸套-活塞环故障诊断方法,通过设计固有模态分量IMF信息质量筛选准则对EEMD分解出的IMFs进行重新排序,获得包含更多凸显故障特征成分的重构信号,输入到上述神经网络模型,通过振动信号分析并与现有方法比较,评估所设计IMF信息质量筛选准则与所搭建模型的性能,试验结果显示该方法能准确、有效地识别缸套-活塞环故障类型.在判断该易损件同类型不同磨损程度故障诊断中有较高的准确率,能对故障状况进行有效的特征提取与故障分类.
Fault Diagnosis for Marine Diesel Engine Cylinder Liner-Piston Rings Based on Improved EEMD-MB1 DCNN
Aiming at the problems of non-linear and non-stationary vibration signals of marine medium-high speed diesel en-gine cylinder liner-piston rings,the similar time and frequency domain characteristics of vibration signals,difficulty in fault iden-tification for the same type of faults with different damage degrees,the vibration signals was used to identify the faults,and a new end-to-end cylinder liner-piston rings fault diagnosis method was set forth based on ensemble empirical mode decomposition(EE-MD)and multi-block 1-D convolutional neural network(MB1DCNN).Through designing IMF information quality screening cri-teria,the IMFs through EEMD decomposed were reordered,to obtaine the reconstructed signals containing more salient fault fea-ture components,which were input into the MB1DCNN network model.The performance of the designed IMF information quality screening criteria and the model were evaluated by vibration signal's analyzing and comparing with existing methods.Experimen-tal results showed that this method can accurately and effectively identify the fault type of cylinder liner-piston rings.It has high accuracy in fault diagnosis of the same type of faults with different wear degrees for the wearing parts,fault feature extraction and classification can be carried out effectively.

marine diesel enginecylinder liner-piston ringsEEMD1DCNNfault diagnosis

王永坚、范金宇、蔡杭溪、赵凯、吴怡婷

展开 >

集美大学 轮机工程学院,福建 厦门 361021

船用柴油机 缸套与活塞环 EEMD 1DCNN 故障诊断

福建省自然科学基金福建省自然科学基金厦门市海洋发展局科技项目

2020J016872021J0184921CZB014HJ08

2024

船海工程
武汉造船工程学会

船海工程

CSTPCD北大核心
影响因子:0.361
ISSN:1671-7953
年,卷(期):2024.53(1)
  • 4