首页|基于SW-BiConvLSTM的船舶轨迹预测

基于SW-BiConvLSTM的船舶轨迹预测

扫码查看
为了对船舶未来时刻的轨迹或航行趋势进行更加精准预测,进一步增强海上交通安全,提高海上安全航行水平,提出一种基于滑动窗口的双向卷积长短期记忆神经网络(SW-BiConvLSTM)的预测模型.该模型使用滑动窗口提取预处理过AIS数据,然后将提取到的数据输入到双向卷积长短期记忆神经网络中,通过滑动窗口进行输出,最终实现对船舶未来轨迹的预测.将该模型与LSTM、GRU及ConvLSTM等模型分别在直线航行、转弯航行及连续转弯航行3 个场景进行对比,结果表明,相较于对比模型,本模型在单步及多步实验上均有更好表现.
Ship Trajectory Prediction Based on SW-BiConvLSTM
To more accurately predict the trajectory or navigation trend of the ship,further enhance maritime traffic safety,and improve the level of maritime safe navigation,a prediction model was presented based on a sliding window bidirectional conv-olutional long short-term memory neural network(SW-BiConvLSTM).The model used a sliding window to extract pre-processed AIS data,input the extracted data into the bidirectional convolutional long short-term memory neural network,and output it through the sliding window to finally predict the ship's future trajectory.The prediction results of this model were compared with that of LSTM,GRU,and ConvLSTM models in three scenarios:straight sailing,turning,and continuous turning,showing that compared with the comparison model,this model performs better in single-and multi-step experiments.

AIS datatrajectory predictionneural networksliding window

赵琦、许志远、葛佳薇、董婕

展开 >

大连海洋大学 航海与船舶工程学院,辽宁 大连 116023

AIS数据 轨迹预测 神经网络 滑动窗口

辽宁省教育厅2022年度高校基本科研项目

LJKMZ20221106

2024

船海工程
武汉造船工程学会

船海工程

CSTPCD北大核心
影响因子:0.361
ISSN:1671-7953
年,卷(期):2024.53(4)