首页|故障检测与重构下基于AFTSMO的ROV三维航迹跟踪控制

故障检测与重构下基于AFTSMO的ROV三维航迹跟踪控制

扫码查看
针对传统的滑模观测器在缆控水下机器人(ROV)系统状态估计与故障重构过程中存在渐近收敛、无法及时准确重构故障信号的问题,提出一种基于自适应快速终端滑模观测器(adaptive fast terminal slid-ing mode observer)的故障检测和控制优化方法.建立带有推进器故障、未知外界干扰和模型参数不确定性等复合干扰的ROV系统故障模型;设计具有自适应特性的快速终端滑模控制器,保证所有的状态估计误差在有限时间内收敛;通过等效输出误差注入法对推进器引起的故障进行估计重构.采用Lyapunov稳定性理论验证控制系统的稳定性,仿真结果表明,所设计的故障检测方法能够快速检测和重构故障,保证ROV系统较高的跟踪精度,并通过实验验证了所提算法的有效性.
Fault Detection and Reconfiguration under AFTSMO-based ROV 3 D Track Tracking Control
In order to solve the problem that traditional sliding mode observer has asymptotic convergence in the process of state estimation and fault reconstruction of cable-operated ROV systems,a fault detection and control optimization method based on adaptive fast terminal sliding mode observer was proposed.A fault model of ROV system with combined interference such as propeller failure,unknown external interference and model parameter uncertainty was established.A fast terminal sliding mode controller with adaptive characteristics was designed to ensure that all state estimation errors converge in finite time.The equiva-lent output error injection method was used to estimate and reconstruct the faults caused by thrusters.The Lyapunov stability theo-ry was used to verify the stability of the control system.The simulation results showed that the proposed fault detection method can quickly detect and reconstruct faults and ensure the high tracking accuracy of the ROV system.and the effectiveness of the proposed algorithm is verified through experiments.

remotely operated vehicle(ROV)RBF Neural Networkfast terminal sliding mode surfacefinite-time con-trolfault reconstruction

唐军、钱明炎、陈善颖、谢彬

展开 >

江西理工大学 机电工程学院,江西 赣州 341000

水下机器人 RBF神经网络 快速终端滑模面 有限时间控制 故障重构

国家自然科学基金

51864015

2024

船海工程
武汉造船工程学会

船海工程

CSTPCD北大核心
影响因子:0.361
ISSN:1671-7953
年,卷(期):2024.53(4)