Controlled Synthesis and Photocatalytic Activity Evaluation of Nanostructured Ag3PO4
Silver phosphate (Ag3PO4) materials with different nanostructures including rod, cambiform and tetrahe-dron with round edges and corners were synthesized by adjusting the molar ratio (W) of water to surfactant in a reverse microemulsion, which consists of sodium dodecyl sulfate (SDS), isopentyl alcohol, cyclohexane, and aqueous solution, using silver nitrate and potassium dihydrogen phosphate as starting materials. The structure, morphology and visi-ble-light-response of the obtained samples were characterized by XRD, SEM, HRTEM, and UV-Vis-DRS spectra. The formation mechanisms of nanostructured Ag3PO4 were discussed. Moreover, the photocatalytic activity was also eva-luated by means of degradation of organic dye methylene blue (MB) in water. The results show that all the samples have body-centred cubic crystal structure, and the W value has an obvious effect on morphologly of nanostructured Ag3PO4. The varied morphologies can be attributed to the change of diameter and interfacial film strength of water nu-clear influenced by SDS content. In addition, all the obtained samples exhibit excellent efficient photocatalytic activity for the photo-degradation of methylene blue (MB) under visible light irradiation, and the tetrahedral Ag3PO4 with ex-posed many {111} facets exhibits the best photocatalytic activity.