首页|Ti和Cu掺杂β-NaMnO2正极材料:钠离子电池的倍率和循环性能

Ti和Cu掺杂β-NaMnO2正极材料:钠离子电池的倍率和循环性能

扫码查看
钠离子电池是一种经济且环境可持续的储能电池。其中,β-NaMnO2作为前景广阔的钠离子正极材料,是一种具有波纹形层状结构的锰基氧化物,因其结构坚固和比容量相对较高而备受关注。然而,β-NaMnO2存在循环寿命短、倍率性能不佳的问题。为了解决这些问题,本研究通过第一性原理计算和晶体轨道哈密顿布局(COHP)分析,在β-NaMnO2中掺入了可以提高材料结构稳定性的Ti原子和有利于钠离子脱出的Cu原子。β-NaMn0。8Ti0。1Cu0。1O2的可逆比容量显著增长,并且具有卓越的倍率性能。在0。2C电流密度(1C=219mA·g-1)、1。8~4。0 V电压范围内,改性材料的初始放电比容量为132 mAh·g-1。分别在0。2C、0。5C、1C、3C和0。2C的电流密度下进行充放电测试后,该材料仍能保持110mAh·g-1的比容量。掺入Ti减缓了晶体结构的变化,晶格常数c/a在脱钠过程中仅有微小变化。Mn和Cu分别在3。0 V以下和3。5 V左右发生可逆氧化还原反应,在放电曲线中,3。0 V以下的长平台表明Mn是电池容量的主要贡献者。本工作深入研究了改性β-NaMnO2正极材料的工作机理,为提高钠离子电池的性能提供了实验依据和理论指导。
Rate and Cycling Performance of Ti and Cu Doped β-NaMnO2 as Cathode of Sodium-ion Battery
Sodium-ion batteries are economical and environmentally sustainable energy storage batteries.Among them,β-NaMnO2,a promising sodium-ion cathode material,is a manganese-based oxide with a corrugated laminar structure,which has attracted significant attention due to its structural robustness and relatively high specific capacity.However,it has short cycle life and poor rate capability.To address these issues,Ti atoms,known for enhancing structural stability,and Cu atoms,which facilitate desodiation,were doped into β-NaMnO2 by first-principles calculation and crystal orbital Hamilton population(COHP)analysis.β-NaMn0.8Ti0.1Cu0.1O2 exhibits a notable increase in reversible specific capacity and remarkable rate properties.Operating at a current density of 0.2C(1C=219 mA·g-1)and within a voltage range of 1.8-4.0 V,the modified material delivers an initial discharge capacity of 132 mAh·g-1.After charge/discharge testing at current densities of 0.2C,0.5C,1C,3C,and 0.2C,the material still maintains a capacity of 110 mAh·g-1.The doping of Ti atoms slows down the changes in the crystal structure,resulting in only minimal variation in the lattice constant c/a during the desodiation process.Mn and Cu engage in reversible redox reactions at voltages below 3.0 V and around 3.5 V,respectively.The extended plateau observed in the discharge curve below 3.0 V signifies that Mn significantly contributes to the overall battery capacity.This study provides insights into modifying β-NaMnO2 as a cathode material,offering experimental evidence and theoretical guidance for enhancing battery performance in Na-ion batteries.

first-principlessodium-ion batterylayered cathode material

周靖渝、李兴宇、赵晓琳、王有伟、宋二红、刘建军

展开 >

中国科学院杭州高等研究院,化学与材料科学学院,杭州 310024

中国科学院上海硅酸盐研究所,高性能陶瓷和超精密微结构国家重点实验室,上海 200050

中国科学院大学材料科学与光电工程中心,北京 100049

第一性原理 钠离子电池 层状正极材料

2024

无机材料学报
中国科学院上海硅酸盐研究所

无机材料学报

CSTPCD北大核心
影响因子:0.768
ISSN:1000-324X
年,卷(期):2024.39(12)