随着民航运输业的迅猛发展,航空运输量和排班量大幅度增加.航空器在可靠性和安全性等诸多方面都有了大幅度提升.由机械故障导致的安全事故比例从80%下降到了20%,而维修过程中的人为差错占比却直线上升,成为影响民航安全、飞行安全及运行成本的重要因素.因此,民航业对于人为差错备受关注.为了降低民航维修中人为差错的发生几率,提高维修生产和适航质量,该文提出了4个层面、18个影响民航维修人为差错的因子.以东航虹桥基地为例,采用了问卷调查收集数据;通过灰狼算法(grey wolf optimization,GWO)结合粒子群算法(particle swarm optimization,PSO)以及增加三种改进策略,提出一种惯性自适应混合灰狼算法(inertial adaptive hybrid grey wolf optimization,IAHGWO);并构建了惯性自适应混合灰狼算法训练径向基函数神经网络(radial basis function neural network,RBFNN)评价模型;结果表明该评价模型具有良好的实用性及准确性,弥补了现阶段民航企业适航质量监管体系对维修人员个体的人为差错管控中针对性、实时性、预见性上的不足.
Human Error Evaluation Model of Civil Aviation Maintenance Based on Gray Wolf Optimization