首页|基于动态功能性脑网络的情感分析

基于动态功能性脑网络的情感分析

扫码查看
人脑活动是在秒级与毫秒级动态变化的,因此采用静态连接方式构建的功能性脑网络,会造成部分与时间相关有效特征的缺失.该文旨在研究情绪变化期间不同大脑区域之间相互作用的时空变化,提出了一个系统的分析框架.该框架包括相关性度量,脑状态分割,代表性时间片段提取以及动态网络构建和分析.首先,利用皮尔逊相关系数量化不同脑区之间的功能连通性.其次,计算两相邻时间点的相关性矩阵之间的奇异值分解(singular value decomposition,SVD)矢量空间距离,确定情绪转换点并对非平稳脑状态进行时间片分割,提取代表性时间片段.最后,基于相关性和频带功率分布构建不同网络模式,利用滑动窗口法估计动态相关模式和动态功率分布变化,然后提取脑动力学的多变量特征并进行分类识别.在SEED数据集上进行的相关实验验证了基于动态功能连接的情感评估方法的可行性,为不同情绪状态下建立脑动态模型开辟了新的途径.
Emotional Analysis Based on Dynamic Functional Brain Network

黄义华、童玥、衡霞、卢忱、王忠民

展开 >

中兴通讯股份有限公司 企业发展部,广东 深圳 518057

移动网络和移动多媒体技术国家重点实验室,广东 深圳 518055

西安邮电大学 计算机学院,陕西 西安 710121

西安邮电大学 陕西省网络数据分析与智能处理重点实验室,陕西 西安 710121

展开 >

功能性脑网络 皮尔逊相关系数 功能连通性 奇异值分解 脑状态分割

国家自然科学基金陕西省科技厅工业攻关资助项目陕西省教育厅专项科学研究计划咸阳市科学技术研究计划

613731162018GY-01316JK17062017k01-25-2

2022

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2022.32(2)
  • 1