首页|结合学科情感分析与依存关系的相似度评分

结合学科情感分析与依存关系的相似度评分

扫码查看
通过对语文古诗文阅读类主观题的分析,提出了结合学科情感分析与依存关系的相似度评分算法,并将其应用于高中语文古诗文阅读类主观题的评分中.首先,以中文维基百科语料为基础,增加了与评分相关的古诗文语料81927条,通过文本向量化算法Word2vec进行词向量训练,完成了对古诗文语料库的构建;基于学科评分特性建立了对应的古诗文过滤词表,提出了基于词性的关键词提取及词向量的相似度计算方法;之后,针对情感分析模型对古诗文语句分析不准确的问题,结合同义词词林,建立了古诗文情感词库;并构建了学科情感分析模型,实现了基于学科情感分析的相似度计算方法;最后,通过关键词、学科情感分析以及依存句法分析,从多个维度计算学生答案与标准答案文本之间的加权语义相似度.并将构建的古诗文语料库、古诗文情感词库和学科情感分析模型,用于相似度综合评分算法,以此实现了结合学科情感分析与依存关系的相似度评分算法.实验表明,该算法的平均评分准确率达到了89.42%.
Similarity Score Combining Subject Sentiment Analysis and Dependency Relationship

付鹏斌、刘曼、杨惠荣

展开 >

北京工业大学 信息学部,北京 100124

主观题 自动评分 情感分析 依存关系 语义相似度

国家自然科学基金国家语委信息化项目北京市自然科学基金

61772048YB135-894153058

2022

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2022.32(2)
  • 6