首页|基于YOLO v4的夜间车辆检测模型轻量化研究

基于YOLO v4的夜间车辆检测模型轻量化研究

Research on Lightweight of Night Vehicle Detection Model Based on YOLO v4

扫码查看
针对夜间车辆检测模型的实时性要求,以YOLO v4模型为基础,将主干特征提取网络更改为灵活性强且易于实现的MobileNet V2,并将加强特征提取网络里面的普通卷积全部更改为深度可分离卷积,同时模型给每个通道引入缩放因子,并与该通道输入相乘.然后将缩放因子正则项和权重损失函数联合进行稀疏正则化训练,此时选择较小的缩放因子进行通道剪枝,剪枝后模型的部分通道缺失,检测性能会降低,因此通过模型微调来弥补精度损失,并经过性能评估后再进行修剪迭代.最后得到一个轻量化的车辆检测模型,使其检测速度更快,更能满足夜间车辆检测的实时性需求.经过在UA-DETRAC数据集的实验分析可知:轻量化夜间车辆检测模型的检测精度可达98.29%,同时每秒处理帧数高达42帧图像.

徐丽、刘星星、屈立成

展开 >

长安大学 信息工程学院,陕西 西安 710000

夜间车辆检测 YOLO v4 MobileNet 深度可分离卷积 通道剪枝

陕西省自然科学基础研究计划

2020JM-258

2022

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2022.32(3)
  • 4
  • 6