首页|基于生成对抗网络的图像超分辨算法

基于生成对抗网络的图像超分辨算法

扫码查看
图像超分辨是使低分辨率图像通过端到端训练产生边缘更清晰的高分辨率图像的一种技术,是数字图像处理的一个重要研究方向.该文提出了一种基于生成对抗网络的图像超分辨算法,并对网络结构进行改进.设计的生成器删除了残差块的BN层,增加了特征识别的相关算法,特征提取部分采用两层卷积网络,可以提取更多的图像特征,在低分辨率图像上提取特征,通过卷积计算得到高分辨率图像,可以提升运算结果的准确性.判别器设计采用先分组再整合的思想,将生成图像划分成一定数量的图像块,计算每一部分的判别结果,然后将所有图像块的判别真假组合起来,作为最终的判别结果.经实验验证,设计的网络模型在图像重建效果上有了一定的提高,并节省了一定的运算时间.
Image Super Resolution Algorithm Based on Generative Countermeasure Network

杨记鑫、胡伟霞、赵杰、徐灵飞

展开 >

成都理工大学 工程技术学院,四川 乐山 614000

核工业西南物理研究院,四川 成都 610225

生成对抗网络 超分辨 图像处理 深度学习 卷积

四川省科技计划成都理工大学工程技术学院项目

2019YJ0705C122019005

2022

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2022.32(4)
  • 5