首页|基于集成学习算法的消费行为预测

基于集成学习算法的消费行为预测

扫码查看
消费行为预测在营销活动中具有重要的价值,其预测效果主要取决于特征工程与算法建模.通过特征提取与新特征发现,提出定长与变长滑动窗口相结合的特征提取方法和基于先验知识与矩阵分解的特征交叉方法.特征提取方法考虑样本不平衡和用户消费习惯,提取更多的样本数据并给特征加上时间属性,而特征交叉方法考虑商品与用户之间隐含的关联关系,提取有关联的新特征.对于单一模型预测效果较差的问题,采用stacking策略构建集成学习模型,以XGBoost、随机森林和梯度提升决策树作为初级学习器对特征进行变换,以逻辑回归作为元学习器对用户消费行为进行预测.实验结果表明,该特征工程方法在多个模型算法中均能明显提高精准率,该集成学习模型预测效果要比单个模型更好.
Consumer Behavior Prediction Based on Ensemble Learning Algorithm

贾志强、李涛、乐金祥

展开 >

武汉科技大学 计算机科学与技术学院,湖北 武汉 430065

行为预测 特征工程 算法建模 stacking策略 集成学习

国家自然科学基金湖北省教育厅重大项目

6170238317ZD014

2022

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2022.32(5)
  • 4
  • 8