首页|基于多层次语义感知的中文关系抽取研究

基于多层次语义感知的中文关系抽取研究

扫码查看
关系抽取是构建知识图谱的基础,而中文关系抽取也是关系抽取中的难点问题,现有的中文关系抽取大多采用基于字符特征或者词特征的方法,但是前者无法捕获字符上下文的信息而后者受制于分词质量,导致中文关系抽取的性能较低。针对该问题,提出了基于多层次语义感知的中文关系抽取模型,该模型利用实体间丰富的语义信息来提高实体对关系预测的性能。多层次语义感知体现在以下三个方面:首先,利用ERNIE预训练语言模型将文本信息转化为动态词向量;然后,利用注意力机制增强实体所在句子的语义表示,同时通过外部知识尽可能地消除实体词的中文歧义;最后,将包含多层语义感知的句子表示放入到分类中进行预测。实验结果表明,所提模型在中文关系抽取的性能上优于已有模型,且更具解释性。
Research on Chinese Relation Extraction Based on Multi-level Semantic Perception
Relation extraction is the basis of constructing knowledge graphs,and Chinese relation extraction is also a difficult problem in relation extraction.Most existing Chinese relation extraction methods use character-based or word-based features,but the former cannot capture contextual information of characters and the latter is limited by the quality of word segmentation,resulting in lower performance of Chinese relation extraction.In response to this problem,a Chinese relation extraction model based on multi-level semantic perception is proposed.This model uses rich semantic information between entities to improve the performance of predicting relationships between entities.Multi-level semantic perception is reflected in the following three aspects:firstly,text information is transformed into dynamic word vectors using the pre-training language model ERNIE;then,attention mechanism is used to enhance the semantic representation of the sentence where the entity is located,while external knowledge is used to eliminate Chinese ambiguity of entity words as much as possible;finally,the sentence representation containing multi-level semantic perception is put into classification for prediction.Experimental results show that the proposed model outperforms existing models in Chinese relation extraction performance and is more in-terpretable.

knowledge graphsChineserelation extractionmulti-levelsemantic perception

付学敬、丁肖摇

展开 >

上海市市场监督管理局信息应用研究中心,上海 200032

战略支援部队信息工程大学,河南 郑州 450000

知识图谱 中文 关系抽取 多层次 语义感知

2023年度上海市市场监督管理局科技项目2022年度河南省重点研发与推广专项(科技攻关)项目

2023-55222102210283

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(1)
  • 32