首页|融合协同知识图谱和图卷积网络的推荐算法

融合协同知识图谱和图卷积网络的推荐算法

扫码查看
推荐系统广泛应用于互联网,缓解信息过载问题。现有研究通常将知识图谱引入推荐算法中,但不能有效获取用户与项目的高阶建模以及存在数据稀疏性的问题。该文提出了一种融合协同知识图谱和图卷积网络的推荐算法(CKGCN)。首先,将用户-项目交互矩阵与项目知识图谱构建为协同知识图谱,利用知识感知注意力机制对邻居节点进行权重分配,递归地捕获用户和项目的特征向量,搜索用户对项目的潜在喜好,有效缓解数据稀疏性的问题。其次,采用基于图卷积网络的邻域聚合算法捕捉每层实体网络之间的高阶联系,将实体与邻域实体聚合,丰富实体语义表示。另外,通过交叉压缩单元协作处理项目特征向量与实体特征向量,探索二者的高阶特征交互,从而过滤实体的冗余信息、挖掘项目更深层次的联系。最后,对用户特征向量与项目特征向量进行计算得出用户对项目的预测概率。经过点击率预测及Top-k推荐实验证明,在书籍Book_Crossing和音乐Last。FM两个公开的数据集上,该算法与五种基线算法相比较,AUC,ACC,F1,Recall@k和Precision@k评价指标值均有提升,表明该模型具有良好的推荐性能。
Collaborative Knowledge Graph and Graph Convolution Network Based Recommendation Algorithm
The recommendation system is widely used in the Internet to alleviate the problem of information overload.The existing research usually introduces knowledge graph into recommendation algorithm,but it cannot effectively obtain the high-level modeling of users and projects and has the problem of data sparsity.We propose a collaborative knowledge graph and graph convolution network based recommendation algorithm(CKGCN).Firstly,the user project interaction matrix and the project knowledge graph are constructed as a collaborative knowledge graph.The weight of neighbor nodes is allocated using the knowledge awareness attention mechanism,the feature vectors of users and projects are captured recursively,and the potential preferences of users for projects are searched to effectively alleviate the problem of data sparsity.Secondly,the neighborhood aggregation algorithm based on graph convolution network is used to capture the higher-order relationship between each layer of entity network,aggregate entities and neighborhood entities,and enrich entity semantic representation.In addition,the cross-compression unit cooperatively processes the project feature vector and entity feature vector to explore their higher-order feature interaction,so as to filter the redundant information of entities and mine the deeper relationship of projects.Finally,the user feature vector and the project feature vector are calculated to obtain the prediction probability of the user to the project.According to the hit rate prediction and Top-k recommendation experiment,on the two public datasets of Crossing and Music Last.FM,this model is compared with five baseline models,namely,AUC,ACC,F1 Recall@ k and Precision@ k,and the e-valuation index values have been improved,indicating that the model has good recommendation performance.

recommendation algorithmcollaborative knowledge graphattention mechanismgraph convolution networkentity feature

沈鑫科、李勇、陈建伟、陈囿任

展开 >

新疆师范大学 计算机科学技术学院,新疆 乌鲁木齐 830054

新疆电子研究所,新疆 乌鲁木齐 830013

推荐算法 协同知识图谱 注意力机制 图卷积网络 实体特征

新疆自治区重点研发计划项目国家自然科学基金项目

2022B01007-362241209

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(1)
  • 21