首页|基于机器学习方法的空气质量预测与影响因素识别

基于机器学习方法的空气质量预测与影响因素识别

扫码查看
空气质量指数(AQI)的精准预测及影响因素识别,对空气污染防护和治理具有重要现实意义。选取北京市2014年第一季度至2022 年第二季度AQI作为研究对象,探究六大污染物、五个气象因子和十四个经济变量对空气质量影响。选用DT,RF,GBDT和XGBoost模型对AQI进行预测,并使用稳定性选择方法定量分析各个变量对AQI的贡献。结果表明:四种模型方法均有良好的预测效果,其中XGBoost和RF的预测效果最优;六大污染物中PM2。5,PM10 浓度和气象因素中的风速和气压对AQI影响较大;十四个经济变量对AQI的影响差异较大,其中城镇居民人均可支配收入、第三产业GDP和规模以上工业总产值等对AQI影响较大,而第一产业GDP和公路货物运输量等影响较小。
Air Quality Prediction and Influencing Factor Identification Based on Machine Learning Methods
The accurate prediction of air quality index(AQI)and the identification of influencing factors are of great practical significance for air pollution prevention and control.The AQI of Beijing from the first quarter of 2014 to the second quarter of 2022 was selected as the research object to explore the influence of six major pollutants,five meteorological factors and fourteen economic variables on air quality.The DT,RF,GBDT and XGBoost models were selected to predict AQI,and the contribution of each variable to AQI was quantitatively analyzed using the stability selection method.The results show that the four model methods have excellent prediction effects,and XGBoost and RF have the best prediction effects;among the six major pollutants,PM2.5,PM10 concentration and meteorological factors,such as wind speed and pressure,have a greater influence on AQI;the influence of fourteen economic variables on AQI is quite different,among which the per capita disposable income of urban residents,tertiary industry GDP and gross industrial output value above designated size have a greater influence on AQI,while the primary industry GDP and road cargo transportation volume have a small influence.

air qualityinfluencing factorsquantitative analysismachine learningselection of stability

李佳成、梁龙跃

展开 >

贵州大学 经济学院,贵州 贵阳 550025

贵州大学 马克思主义经济学发展与应用研究中心,贵州 贵阳 550025

空气质量 影响因素 定量分析 机器学习 稳定性选择

国家自然科学基金项目贵州省省级科技计划项目贵州省教育厅人文社会科学研究基地项目贵州大学经济学院创新基金资助项目

52000045黔科合基础-ZK[2022]一般07623RWJD030CJ2022107

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(1)
  • 32