首页|基于深度学习的无人机单目标跟踪

基于深度学习的无人机单目标跟踪

扫码查看
无人机单目标跟踪,是指对无人机运动过程中拍摄的视频进行实时处理,进而准确、稳定地跟踪一个移动目标。无人机单目标跟踪受环境影响较大,存在光照变化、背景干扰、目标遮挡、相似目标干扰等问题,使得追踪准确性尚有待提高。针对上述问题,以SiamRPN++为基础,对其模型和损失函数进行创新性优化。主要研究贡献:在网络骨架(Backbone)方面,通过引入注意力机制网络结构SENet,与原有模型的ResNet50 组成Se_ResNet50,提升对单目标跟踪的准确性和有效性;在损失函数方面,使用Balanced L1 Loss提升关键的回归梯度,在分类、整体定位以及精确定位中实现更加平衡的训练;在SiamRPN++的结构基础上,对Backbone和Loss函数进行优化。实验使用ILSVRC2013 和ILSVRC2014 的DET数据集进行训练,以VOT2018 和OTB100 为测试数据集检验训练精度。最终追踪准确性在原基础上得到了一定的提高。
Single Target Tracking for UAV Based on Deep Learning
Unmanned aerial vehicle(UAV)single target tracking refers to real-time processing of videos captured during UAV movement,accurately and stably tracking a moving target.UAV single target tracking is greatly affected by the environment,with issues such as changes in lighting,background interference,target occlusion,and interference from similar targets,resulting in the need for further improvement in tracking accuracy.We focus on these issues and creatively optimize the SiamRPN++ model and loss function.The main research contributions are as follows:in terms of network backbone,we introduce the attention mechanism network structure SENet and combine it with the original ResNet50 model to form Se_ResNet50,improving the accuracy and effectiveness of singles target tracking.In terms of loss function,we use Balanced L1 Loss to enhance the key regression gradients and achieve a more balanced training in classification,overall localization,and precise localization.Based on the structure of SiamRPN++,we optimize the Backbone and Loss functions.Experiments were conducted using the ILSVRC2013 and ILSVRC2014 DET datasets for training and VOT2018 and OTB100 as test datasets to verify training accuracy.Ultimately,tracking accuracy was improved to a certain extent compared to the original.

unmanned aerial vehicle(UAV)deep learningobject trackingattention mechanismbalanced L1 lossSENet

谢志丰、周诺、梁军

展开 >

华南师范大学 软件学院,广东 佛山 528225

无人机 深度学习 目标跟踪 注意力机制 平衡L1损失 SENet

广东省基础与应用基础研究基金广东省基础与应用基础研究基金(重点项目)

2022A15151401102020B1515120089

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(1)
  • 26