首页|基于n值关系语义的命题模态逻辑系统研究

基于n值关系语义的命题模态逻辑系统研究

扫码查看
传统的多值模态逻辑系统将关系语义中的状态及状态间的关系进行了多值化处理。然而,实际应用中状态间的关系往往是确定的,无需多值化。针对这种情况,基于Łukasiewicz代数系统提出了一种新的命题模态逻辑n值关系语义。在所提出的n值关系语义中,针对状态进行了多值化处理,同时保持了状态间关系的确定性。通过对逻辑公式的形式化定义以及可满足性和有效性的分析,证明了n值关系语义下经典命题模态逻辑系统K,T,S4 和S5 的正确性。进一步地,给出了极大一致集与典范模型在n值关系语义下的定义,并完成了上述经典命题模态逻辑系统的完备性证明。上述结论表明基于n值关系语义的命题模态逻辑系统能够涵盖并捕捉到经典逻辑系统中的所有有效命题。综上所述,所提出的基于Łukasiewicz代数系统的n值关系语义提供了一种在实际应用中处理多值状态及确定的状态间关系的方法。这种方法在扩展命题模态逻辑系统的形式化定义与关系语义是可行且有效的。
Research on a Propositional Modal Logic System Based on n-Valued Relational Semantics
Traditional multi-valued modal logic systems are established by mapping both of states and relations to multi-valued spaces in terms of their relational semantics.However,in practical applications,the relations between states are often deterministic and do not require multi-valuation.To address this issue,a new kind of n-valued relational semantics for propositional modal logic,based onŁukasiewicz algebra system,has been proposed.In the proposed n-valued relational semantics,states are treated with multi-valuation while maintaining the determinism of relations between states.By formalizing the logical formulas and analyzing their satisfiability and validity,the correctness of the classical propositional modal logic systems K,T,S4,and S5 under the n-valued relational semantics has been demonstrated.Furthermore,the definitions of maximal uniform sets and canonical models have been provided under the n-valued relational semantics,along with the completeness proofs of the aforementioned classical propositional modal logic systems.This implies that the propositional modal logic system based on n-valued relational semantics can cover and capture all valid propositions in these classical systems.In conclusion,then-valued relational semantics based on Łukasiewicz algebra system offers a method to handle deter-ministic relations between multi-valued states in practical applications.This method has shown feasibility and effectiveness in expanding the formal definition and relational semantics of propositional modal logic systems.

modal logicmulti-valued logicrelational semanticsŁukasiewicz systemcorrectness and completeness

周张泉、杨成彪、刘军

展开 >

陆军工程大学 指挥控制工程学院,江苏 南京 210000

东南大学 计算机科学与工程学院,江苏 南京 210000

南京审计大学金审学院 信息科学与工程学院,江苏 南京 210000

模态逻辑 多值逻辑 关系语义 Łukasiewicz系统 正确性和完备性

江苏省高等学校基础科学(自然科学)研究面上项目A类

22KJB520003

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(2)
  • 30