首页|边缘场景下动态联邦学习优化方法

边缘场景下动态联邦学习优化方法

扫码查看
边缘计算(Edge Computing)是一种新的计算方式,通过在网络边缘提供计算服务,与传统的云计算模式相比,具有高可信度和低延迟等特点。联邦学习(FL)作为一种分布式机器学习方法,尽管具备保护隐私和数据安全的特性,却仍然面临设备异构和数据不均衡等问题,导致出现部分参与者(边缘端)训练时间长、训练效率低下等问题。为了解决上述问题,该文提出了一种名为FlexFL的动态联邦学习优化算法。该算法引入了两层联邦学习策略,通过在同一参与者部署多个联邦学习训练服务和一个联邦学习聚合服务,将本地数据集平均分配给各个联邦学习训练服务,并每回合激活一定数量的训练服务。未激活的服务将休眠,不占用计算资源,并将资源平均分配给激活的服务,以加快训练速度。该算法能够平衡参与者设备异构和数据不均衡性带来的训练时间差异,从而提高整体训练效率。在MINST数据集和CIFAR数据集上与FedAvg联邦学习算法进行了对比实验,结果显示,FlexFL算法在减少时间消耗的同时,不降低模型性能。
Dynamic Federated Learning Optimization Method in Edge Scenarios
Edge computing is a new computing paradigm that provides computational services at the network edge.Compared to traditional cloud computing,edge computing offers advantages such as high reliability and low latency.However,federated learning(FL),a distributed machine learning method,still faces challenges related to device heterogeneity and data imbalance,leading to issues like prolonged training time and low training efficiency for certain participants(edge devices).To address these challenges,we propose a dynamic federated learning optimization algorithm called FlexFL.The algorithm introduces a two-tier federated learning strategy by deploying multiple federated learning training services and a federated learning aggregation service on the same edge device.It evenly partitions the local dataset among the federated learning training services and activates a certain number of training services per round.Inactive services go into a dormant state,freeing up computing resources and redistributing them evenly among the active services to accelerate training.The algorithm balances the discrepancies in training time caused by device heterogeneity and data imbalance,thereby improving overall training efficiency.Experimental comparisons between the FlexFL algorithm and the FedAvg federated learning algorithm were conducted on the MINST dataset and CIFAR dataset,and the results demonstrate that FlexFL reduces time consumption without compromising model performance.

edge computingmachine learningfederated learningservice dynamic scalingdata imbalancedevice heterogeneity

王志良、何刚、俞文心、许康、文军、刘畅

展开 >

西南科技大学 计算机科学与技术学院,四川 绵阳 621010

国家卫生健康委核技术医学转化实验室(绵阳市中心医院),四川 绵阳 621010

边缘计算 机器学习 联邦学习 服务动态缩放 数据不均衡 设备异构

四川省科技项目四川省科技项目国家卫生健康委员会核技术医学转化重点实验室开放课题

2020YFS04542020YFS03182021HYX031

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(2)
  • 22