首页|基于多分支特征融合的自然场景文本检测算法

基于多分支特征融合的自然场景文本检测算法

扫码查看
EAST算法是一种高效而准确的场景文本检测算法,但是由于受到感受野的限制,导致在检测小文本时容易出现误检、漏检现象,在检测较长文本时缺乏一定的完整性.针对以上问题,提出一种基于多分支特征融合的自然场景文本检测算法.该算法以EAST算法为基础,引入并改进了浅层特征增强模块(RFB-s),在避免小文本信息损失的前提下,增大浅层网络的感受野改善浅层特征语义信息不足的问题,增强对小文本定位的准确性.引入并改进了循环十字交叉注意力模块(RCCAM),使得特征图中的每个像素能够以非常有效的方式捕获全图像的上下文信息,提高对长文本的检测能力.同时针对回归任务,采用Dice Loss作为损失函数,解决正负样本占比不均衡问题.采用EIoU来提高回归的效果,得到更为精准的文本框.该算法在ICDAR2015 和MSRA-TD500 数据集上进行测试,均获得了不错的检测效果.表明了该算法能够有效地对自然场景文本进行检测,提高了检测的准确率.
Natural Scene Text Detection Algorithm Based on Multi-branch Feature Fusion
EAST is an efficient and accurate scene text detection algorithm,but due to the limitation of receptive field,it is prone to false detection and missed detection when detecting small text,and lacks certain integrity when detecting long text.Aiming at the above problems,a natural scene text detection algorithm based on multi-branch feature fusion is proposed.Based on the EAST,the proposed al-gorithm introduces and improves the shallow feature enhancement module(RFB-s),and increases the receptive field of the shallow network to improve the problem of insufficient semantic information of shallow features on the premise of avoiding the loss of small text information to enhance the accuracy of small text positioning.The Recurrent Criss-Cross Attention Module(RCCAM)is introduced and improved,so that each pixel in the feature map can capture the contextual information of the full image in a very effective way,improving the detection ability of long text.At the same time,for the regression task,Dice Loss is used as the loss function to solve the problem of unbalanced proportion of positive and negative samples.EIoU is used to improve the effect of regression and get a more accurate text box.The proposed algorithm was tested on the ICDAR2015 and MSRA-TD500 datasets,and both achieved good detection results.It is showed that the proposed algorithm can effectively detect natural scene text and improve the accuracy of detection.

text detectionEASTshallow feature enhancementrecurrent criss-cross attentionloss function

张庭瑞、方承志、徐国钦、陈睿霖

展开 >

南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210023

文本检测 EAST算法 浅层特征增强 循环十字交叉注意力 损失函数

国家自然科学基金

61977039

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(2)
  • 10