首页|基于改进的YOLOv5网络的舌象检测算法

基于改进的YOLOv5网络的舌象检测算法

扫码查看
针对目前舌象检测模型在自然状态下对舌象检测存在的误检和漏检的问题,以收集的舌象为研究对象,提出了一种基于YOLOv5 的自然状态下的舌象检测算法。首先,将原有的SiLU激活函数替换为ReLu激活函数,减少指数运算,加速舌象检测网络收敛;然后,利用Ghost轻量化模块技术,大幅降低舌象检测网络的参数量;最后,将SimAm注意力机制融入特征提取网络获取舌象特征,从多维度融合舌象特征,降低自然环境对舌象特征提取的影响。得到一个轻量化的舌象检测模型,在自制的数据集上分析可知:轻量化检测模型参数量达到7。8 MB,检测的精度达到96。6%,同时每秒处理帧数高达86 帧,更适合自然状态下舌象的采集工作。实验结果表明,改进的舌象检测网络在自制舌象数据集上,相比于其它常用检测算法,性能指标上均有不同程度提升,对舌象的检测效果更好。
Tongue Image Detection Algorithm Based on Improved YOLOv5 Network
Aiming at the problem of false detection and missed detection of tongue image in the natural state of the current tongue image detection model,we propose a tongue image detection algorithm based on YOLOv5 in the natural state with the collected tongue image as the research object.Firstly,the original SiLU activation function is replaced with the ReLu activation function to reduce the exponential operation and accelerate the convergence of the tongue image detection network.Then,Ghost lightweight module technology is used to greatly reduce the number of parameters of the tongue detection network.Finally,the SimAm attention mechanism is integrated into the feature extraction network to obtain tongue features,and the tongue features are fused from multiple dimensions to reduce the influence of the natural environment on the extraction of tongue features.A lightweight tongue image detection model is obtained,which can be analyzed on the self-made dataset:the weight of the lightweight detection model reaches7.8 MB,the detection accuracy reaches96.6%,and the number of frames per second is as high as 86 frames,which is more suitable for the collection of tongue images in the natural state.The experimental results show that compared with other commonly used detection algorithms,the performance index of the improved tongue image detection network has been improved to different degrees,and the detection effect of tongue image is better.

tongue image detectionYOLOv5ReLu activation functionlightweightSimAm attention mechanism

张杨、辛国江、王鑫、朱磊

展开 >

湖南中医药大学 信息与工程学院,湖南 长沙 410208

舌象检测 YOLOv5 ReLu激活函数 轻量化 SimAm注意力机制

湖南省一流本科课程湖南省教育科研重点项目湖南省中医药科研计划重点课题

2021-89622A02552020002

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(2)
  • 27