首页|多项式变异和自适应权重优化的阿奎拉鹰算法

多项式变异和自适应权重优化的阿奎拉鹰算法

扫码查看
针对基本阿奎拉鹰算法存在收敛精度低、易陷入局部最优的问题,通过在全局搜索阶段引入多项式变异扰动策略,在局部开发阶段引入自适应权重优化策略,改进了阿奎拉鹰算法的局部探索能力,并且引入了Tent混沌映射初始化种群,增加种群多样性,引入动态转换概率策略来平衡全局探索和局部开发的比重,故提出多项式变异和自适应权重优化的阿奎拉鹰算法。采用基本阿奎拉鹰算法、哈里斯鹰算法、灰狼算法、鲸鱼算法、海鸥算法做对比,9 个基准测试函数和2 个工程优化问题对改进后的算法进行寻优性能验证,结果表明:改进后的算法在多数测试函数上取得较好的寻优效果,在工程优化问题中,效果优于多数对比算法。证明了改进后的算法具有更快的收敛速度和精度,并在工程应用中取得较好效果。
Polynomial Variance and Adaptive Weight Optimization for Aquila Algorithm
To address the problem that the basic Aquila algorithm has low convergence accuracy and is prone to fall into local optimum,by introducing a polynomial variance perturbation strategy in the global search phase and an adaptive weight optimization strategy in the local exploitation phase,the local exploration ability of Aquila is improved.A Tent chaos mapping is introduced to initialize the population and increase the population diversity,and a dynamic transformation probability strategy is introduced to balance the weight of global exploration and local exploitation,so the Aquila algorithm with polynomial variance and adaptive weight optimization is proposed.The basic Aquila algorithm,Harris Hawks algorithm,Gray Wolf algorithm,Whale algorithm,and Seagull algorithm are used for comparison,and 9 benchmark test functions and 2 engineering optimization problems are used to verify the improved algorithm's optimization-seeking performance.The results show that the improved algorithm achieves better optimization-seeking results on most of the test functions and outperforms most of the comparison algorithms in engineering optimization problems.It is proved that the improved algorithm has faster convergence speed and accuracy,and achieves good results in engineering applications.

Tent chaotic mappingdynamic conversion probability strategypolynomial variance perturbation strategyadaptive weightAquila optimizer

李汶娟、李广、聂志刚

展开 >

甘肃农业大学 信息科学技术学院,甘肃 兰州 730070

Tent混沌映射 动态转换概率策略 多项式变异扰动策略 自适应权重 阿奎拉鹰算法

国家自然科学基金项目甘肃省教育厅产业支撑计划项目甘肃省教育厅产业支撑计划项目

321604162021CYZC-152022CYZC-41

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(2)
  • 19