首页|开放场景中的高精度车牌识别算法

开放场景中的高精度车牌识别算法

扫码查看
目前,限制条件下的车牌识别算法比较成熟,广泛应用于各种车牌识别系统。由于拍摄角度差异较大、车辆运动模糊等因素的影响,中文车牌识别仍具有较大的挑战性。针对上述问题,该文放弃单一的端到端深度学习的车牌识别方法,提出了一种检测、分类一体化的逐级车牌识别算法,采用逐级对象检测策略与字符分类相结合预测车牌的字符结果。在此基础上,提出一种多锚点字符位置回归算法,进一步精确回归所有车牌字符的局部区域位置信息。同时为了满足字符检测和字符分类的需求,解决现有车牌数据集类别不均衡的问题,该文贡献了一系列配套的车牌数据集。充分实验表明,该方法在不同数据集上都能达到目前的先进水平,并在公开数据集CCPD上准确率达到了99%,在开放场景中具备高精度和高鲁棒性。
High Precision License Plate Recognition Algorithm in Open Scene
At present,license plate recognition algorithm under restricted conditions is relatively mature and widely used in various license plate recognition system.Due to the influence of factors such as large differences in shooting angles and vehicle motion blur,Chinese license plate recognition is quite challenging.In response to the above problems,we abandoned the single end-to-end deep learning license plate recognition method,and proposed a step-by-step license plate recognition algorithm that integrated detection and classification,and utilized a level-by-level object detection strategy combined with character classification to predict the characters of the license plate result.On the basis,a multi-anchor character position regression algorithm was proposed to further accurately regress the local area position information of all license plate characters.At the same time,in order to meet the needs of character detection and character classification,and solve the problem of the imbalance of the existing license plate datasets,we contributed a series of supporting license plate datasets.Extensive experiments show that the proposed method can reach the current state-of-the-art on different datasets,and the accuracy rate on open dataset CCPD is up to 99%,with high precision and robustness in open scene.

Chinese license platelicense plate datasetlicense plate recognitioncharacter classificationmulti-anchor

舒森、邓春华

展开 >

武汉科技大学 计算机科学与技术学院,湖北 武汉 430065

中文车牌 车牌数据集 车牌识别 字符分类 多锚点

国家自然科学基金

61806150

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(2)
  • 23