首页|融合多策略的改进黏菌算法及工程应用

融合多策略的改进黏菌算法及工程应用

扫码查看
黏菌优化算法(Slime Mould Algorithm,SMA)是根据黏菌个体振荡捕食行为提出的一种新型元启发式算法,因其原理简单被应用于多种复杂的优化问题中,基本的SMA在处理一些较为复杂的问题时仍然存在收敛速度较慢、精度不足、鲁棒性差等劣势。为克服这些缺点,提升原算法性能,提出一种融合Sine混沌映射、t分布以及黄金正弦策略的改进黏菌算法(GTSMA)。首先,引入Sine混沌序列初始化种群,提高算法在初始迭代过程中黏菌种群个体的多样性;其次,在黏菌个体更新位置过程中将自由度参数t与基本SMA融合,增加算法跳出局部最优的概率;最后,通过与黄金正弦算法相结合,挑选更优秀的黏菌个体,输出最优解。利用基准测试函数、CEC2021 测试集将GTSMA与其他算法进行对比,实验结果表明GTSMA在测试过程中鲁棒性、寻优精度和收敛性能都优于其他算法。将GTSMA应用于工程优化问题,进一步验证了GTSMA在处理实际优化问题上的优越性。
Improved Slime Mould Algorithm with Fusion of Multiple Strategies and Engineering Application
Slime mould algorithm(SMA)is a new meta heuristic algorithm based on the oscillatory predatory behavior of slime mould individuals.Because of its simple principle,SMA has been applied to a variety of complex optimization problems.The basic SMA still has disadvantages such as slow rate of convergence,insufficient accuracy,and poor robustness when dealing with some more complex problems.To overcome these shortcomings and improve the performance of the original algorithm,we propose an improved slime mould algorithm(GTSMA)that integrates sine chaotic mapping,t-distribution,and golden sine strategy.Firstly,the Sine chaotic sequence is introduced to initialize the population and improve the diversity of the slime mould population during the initial iteration process of the al-gorithm.Secondly,in the process of updating the position of slime mould individuals,the degree of freedom parametertis fused with the basic SMA to increase the probability of the algorithm jumping out of local optima.Finally,by combining with the golden sine algorithm,better slime mould individuals are selected to output the optimal solution.The benchmark test function and CEC2021 test set were used to compare the test results of GTSMA with other algorithms.Experimental results show that GTSMA has better robustness,op-timization accuracy and convergence performance than that of other algorithms during the test.Applying GTSMA to engineering optimization problems further validates its superiority in handling practical optimization problems.

slime mould algorithmSine chaotic mapadaptive t distributiongolden sine algorithmengineering optimization problem

李梦真、莫愿斌

展开 >

广西民族大学 人工智能学院,广西 南宁 530006

黏菌算法 Sine混沌映射 自适应t分布 黄金正弦算法 工程优化问题

国家自然科学基金资助项目广西自然科学基金资助项目广西民族大学科研项目

214660082019GXNSFAA1850172021MDKJ004

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(2)
  • 16