首页|基于能源大数据特征的数据评价方法研究及应用

基于能源大数据特征的数据评价方法研究及应用

扫码查看
为实现对能源数据资产价值的高效准确评估,促进数据要素流通,提出一种基于能源数据资产特征的能源数据评价方法。通过对能源数据在技术、行业等方面特征的分析,提取数据质量、成本、应用三项资产价值化关键影响因素。通过引入数据质量因素,构建能源数据质量的价值联系函数,并形成业务结合的数据质量评价体系;通过引入成本和应用因素,构建基于能源大数据应用场景和数据资产生存周期视角的成本评价方法,以及多维应用评价方法。分析可知,数据质量因素显著影响能源数据的应用价值,提升数据质量则会增加数据资产成本。典型能源大数据资产化场景的应用结果表明,提出的能源数据评价方法有效实现了质量评价、成本评价和应用评价,具备应用性和可推广性,能够支持进一步的能源大数据价值评估。
Research and Application of Data Evaluation Methods Based on Energy Big Data Characterization
To achieve efficient and accurate evaluation of the value of energy data assets and promote its circulation,a method for energy data evaluation based on the characteristics of energy data assets is proposed.We focus on the characterization of energy big data and examine three key factors that influence asset valorization:data quality,data cost,and data application.Through the introduction of data quality factors,we develop a Sigmoid function based value link function which reflects the nonlinear characteristics between data value u-tilization and data quality,and form a data quality evaluation system in conjunction with business operations.Additionally,we propose a cost evaluation method based on energy data application scenarios and the data asset life cycle perspective,as well as a multi-dimensional application evaluation method.Data quality factors significantly affect the application value of energy data,while improving data quality will increase the cost of data assets.The application results of typical energy big data assetization scenarios indicate that the energy data e-valuation method proposed effectively achieves quality evaluation,cost evaluation,and application evaluation,and has applicability and scalability,which can support energy data value evaluation in the future.

energy big datadata evaluationdata qualitydata costdata applicationdata asset value evaluation

刘文立、陈士翀、刘文思、宣东海、江丽娜、沈子奇

展开 >

国家电网有限公司大数据中心,北京 100052

能源大数据 数据评价 数据质量 数据成本 数据应用 数据资产价值评估

国家电网有限公司大数据中心科技项目

SGSJ0000NYJS2200102

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(3)
  • 24