计算机技术与发展2024,Vol.34Issue(3) :35-40.DOI:10.3969/j.issn.1673-629X.2024.03.006

灰狼算法优化SVR的10kV配网线损率预测研究

Research on Line Loss Rate Prediction of 10kV Distribution Network Based on SVR Optimized by Gray Wolf Algorithm

杨正宇 沈志强 郑成源
计算机技术与发展2024,Vol.34Issue(3) :35-40.DOI:10.3969/j.issn.1673-629X.2024.03.006

灰狼算法优化SVR的10kV配网线损率预测研究

Research on Line Loss Rate Prediction of 10kV Distribution Network Based on SVR Optimized by Gray Wolf Algorithm

杨正宇 1沈志强 2郑成源3
扫码查看

作者信息

  • 1. 云南电力试验研究院(集团)有限公司,云南 昆明 650217
  • 2. 云南电网有限责任公司临沧供电局,云南 临沧 677000
  • 3. 云南电网有限责任公司电力科学研究院,云南 昆明 650217
  • 折叠

摘要

有效控制线损率不仅能为电力企业带来经济效益,而且能进一步提高一次能源的利用率.为了实现对10 kV配电网线损率的准确预测,提出基于灰狼算法(Gray Wolf Optimizer)优化支持向量机回归(Support Vector Regression)的 10 kV配电网线损率预测方法;采用基于马氏距离的异常值检验及主成分分析法(Principal Components Analysis)对原始数据进行预处理,保证数据的清洁性的同时剔除原始数据中的冗余信息.利用GWO算法强搜索性的特点与SVR进行结合建立模型,通过与原始SVR、ABC-SVR、BP神经网络模型的预测结果进行比较,GWO-SVR模型的预测精度最高,其均方根误差(RMSE)和平均绝对误差(MAE)分别为0.233 2 和0.195 8,最大相对误差为14.4%,并且该模型具有最快的运算速度.

Abstract

Effective control of line loss rate can not only bring economic benefits to power enterprises,but also improve the utilization rate of primary energy.In order to achieve accurate prediction of 10kV distribution network line loss rate,a Support Vector Regression prediction method based on Gray Wolf Optimizer was proposed.The outlier test based on Mahalanobis distance and Principal Components Analysis are used to preprocess the original data to ensure the cleanliness of the data and eliminate the redundant information in the original data.The strong search ability of GWO algorithm was combined with SVR to establish the model.Compared with the pre-diction results of original SVR,ABC-SVR and BP neural network models,the prediction accuracy of GWO-SVR model was the highest,and its root mean square error(RMSE)and mean absolute error(MAE)were 0.233 2 and 0.195 8,respectively.The maximum relative error is 14.4%,and this model has the fastest computing speed.

关键词

灰狼算法/10kV配电网/马氏距离/主成分分析/线损率

Key words

gray wolf algorithm/10kV distribution network/Mahalanobis distance/principal component analysis/line loss rate

引用本文复制引用

基金项目

南方电网有限责任公司科技项目(YNKJXM20220166)

出版年

2024
计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
被引量1
参考文献量16
段落导航相关论文