首页|面向方面级情感分析的双通道图卷积网络

面向方面级情感分析的双通道图卷积网络

扫码查看
当前大多数方面级情感分析通过在句法依赖树上构建图神经网络,从句法依赖树上聚合方面项与上下文之间的情感信息,缺乏对文本语义相关性以及文本中情感知识的挖掘。为此,提出一种融合语义信息和文本自身情感信息的双通道图卷积神经网络(Dual-Channel Graph Convolutional Networks,DC-GCN)模型,该模型基于具有上下文语义相信息的句法依赖图(Sentiment-relationship Graph,SrG)和情感依赖图(Sentiment Graph,SeG)构建。具体来说:首先,使用注意力机制捕获文本的语义相关性,并将其融入句法依赖,设计了一个具有上下文语义信息的句法依赖图(SrG);其次,整合SenticNet词典中单词的情感信息构建了一个文本情感依赖图(SeG);最后,分别基于SrG和SeG构建单通道图卷积神经网络,再将两个单通道图卷积网络融合成双通道图卷积神经网络,以融合文本的具有语义信息的句法特征和文本自身的情感特征。在四个公开数据集(Twitter,Rest14,Lap14 和Rest16)上取得了比对比模型更好的效果,其中文中模型在Marco-F1 值上分别高出对比模型0。95 百分点、1。24 百分点、0。62 百分点和2。75 百分点。
Aspect-based Sentiment Analysis via Dual-channel Graph Convolutional Network
At present,most aspect-level sentiment analysis aggregates the emotional information between aspects and context from syntactic dependency trees by constructing graph neural networks on syntactic dependency trees,and lacks the mining of semantic correlation of text and emotional knowledge in text.To this end,we propose a dual-channel graph convolutional network(DC-GCN)model that integrates semantic information and text self-emotional information,which is built by the SrG(Sentiment-relationship Graph)and the SeG(Sentiment Graph)with contextual semantic phase information.Specifically:firstly,the attention mechanism is used to capture the semantic relevance of the text and integrate it into the syntactic dependency,and the SrG with contextual semantic information is designed;secondly,the emotional information of words in SenticNet dictionary is integrated to construct the SeG;finally,a single-channel graph convolutional neural network is constructed based on SrG and SeG,and then the two single-channel graph convolutional networks are fused into a two-channel graph convolutional neural network to fuse the syntactic features of the text with semantic information and the emotional characteristics of the text itself.The four public datasets of Twitter,Rest14,Lap14 and Rest16 a-chieved better results than that of the comparison model,and the Marco-F1 values of the proposed model were0.95%,1.24%,0.62%and 2.75%higher than that of the comparison model,respectively.

aspect-based sentiment analysissyntactic dependencyself-attention mechanismsentiment informationgraph convolutional network

刘洋、黎茂锋、黄俊、陈立伟

展开 >

西南科技大学 计算机科学与技术学院,四川 绵阳 621010

方面级情感分析 句法依赖 自注意力机制 情感信息 图卷积网络

四川省自然科学基金项目

2022NSFSC0940

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(3)
  • 32