首页|基于隐式反馈和加权用户偏好的推荐算法

基于隐式反馈和加权用户偏好的推荐算法

扫码查看
针对现有隐式反馈算法中正负样本划分不合理、忽略用户操作频次、无法准确建模用户偏好等问题,提出一种基于隐式反馈和加权用户偏好的推荐算法(IFW-LFM)。该算法考虑了用户操作频次与正负样本划分间的关系,学习并改进wALS算法,根据用户操作频次从缺失值中重新挖掘潜在正负样本,将用户操作频次大于 1 时的样本设置为正样本,用户操作频次为1 或0 时的样本为正样本或负样本,不再需要人为引入负样本;根据用户操作频次对用户偏好程度的影响,定义了置信度,明确用户偏好,并将其应用在隐因子模型的框架中;利用用户收听歌曲起止时间、收听时长等隐式反馈数据,提高隐式反馈样本利用度。在两个音乐数据集上的对比实验结果说明,该算法在准确率、召回率与NDCG值上与5 个经典隐式反馈算法(UserCF、ItemCF、LFM、BPR、SVD)相比最大平均提升了45。81%,83。83%和60。33%,具有更优的推荐效果。
Recommendation Algorithms Based on Implicit Feedback and Weighted User Preferences
In view of the unreasonable division of positive and negative samples,ignoring the frequency of user operations and failing to accurately model user preferences,we propose a recommendation algorithm based on implicit feedback and weighted user preferences(IFW-LFM).The algorithm considers the relationship between user operation frequency and positive and negative sample division,learns and improves wALS algorithm,and re-mines potential positive and negative samples from missing values according to user operation frequency.It sets the samples with user operation frequency greater than 1 as positive samples and those with user operation fre-quency of 1 or 0 as positive or negative samples,eliminating the need to artificially introduce negative samples;defines the confidence level according to the influence of user operation frequency on the degree of user preference,specifies the user preference and applies it to the framework of the hidden factor model;uses the user listening to song start and end time,listening duration and other implicit feedback data to improve the utilisation of implicit feedback samples.The results of the comparison experiments on two music datasets illustrate that the accuracy,recall and NDCG values of the proposed method have a maximum average improvement of 45.81%,83.83%and 60.33%respectively compared with the five classical implicit feedback algorithms of UserCF,ItemCF,LFM,BPR and SVD,which has better recommendation results.

recommendation algorithmsimplicit feedbackfrequency of operationuser preferencesmusic recommendation

夏翔、刘姜、倪枫、陆劲宇

展开 >

上海理工大学 管理学院,上海 200093

推荐算法 隐式反馈 操作频次 用户偏好 音乐推荐

国家自然科学基金资助项目

11701370

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(3)
  • 22