首页|煤矿工种知识图谱智能问答研究

煤矿工种知识图谱智能问答研究

扫码查看
知识图谱是用于表征实体间结构关系的新一代知识库,其通过语义网络描述现实世界事物之间的逻辑关系,而基于知识图谱的智能问答技术也在不断发展,智能问答系统与知识图谱相结合,是对结构化知识的进一步剖析及利用。该文通过收集煤矿工种专业信息,构建煤矿工种知识图谱,并在此基础上对智能问答技术和系统进行了研究。在知识图谱构建方面,对工种专业进行定义,通过Bert-BiLSTM-CRF实体识别模型对煤矿工种关键信息进行抽取,再利用图数据库存储三元组工种知识数据得到工种图谱。在智能问答环节,通过设计问题模板,利用Bert模型实现端到端的问句意图识别和槽位提取,并采用Sentente-Bert对问句的提及词和知识图谱的候选实体进行链接,继而将问句转化形成图数据库查询语句,从图谱中返回答案。实验结果表明,构建的煤矿工种知识图谱及智能问答系统,在多个评价指标表现良好,可以满足煤矿工种知识问答需求,为煤矿智能化建设做出了有益探索。
Research on Intelligent Question Answering Based on Knowledge Graph of Coalmine Occupation
Knowledge graph(KG)is a new generation of knowledge base used to represent the structural relationship between entities,which describes the logical relationship between things in the real world through the semantic network,and the intelligent question answering technology based on knowledge graph is also constantly developing.Knowledge graph based question answering(KBQA)is the combination technology of intelligent question answering and knowledge graph,which is a further analysis and utilization of structured knowledge.In this study,we construct the knowledge graph of coalmine occupation and then study the related KBQA technology and system.In terms of knowledge graph construction,the work specialty is defined,the key entity information of coalmine occupation is extracted by Bert-BiLSTM-CRF model,and the work graph is obtained by storing triplet knowledge data of work in graph database.In the intelligent question-and-answer session,the question template is designed,Bert model is used to realize the end-to-end question intent recognition and slot extraction,and Sentent-BERT is used to link the reference words of the question and the candidate entities of the knowledge graph,and then the question is transformed into a graph database query statement,and the answer is returned from the graph.The experimental results show that the proposed KBQA methodology performs well in several evaluation indicators,which can meet the requirements of knowledge question answering for coal mines,and make a beneficial exploration for the intelligent construction of coal mines.

coalmine occupationknowledge graphintelligent question answeringintent recognitionslot extraction

刘鹏、程浩然、王莹、魏微、丁恩杰

展开 >

矿山物联网应用技术国家地方联合工程实验室,江苏 徐州 221008

中国矿业大学 物联网(感知矿山)研究中心,江苏 徐州 221008

中国矿业大学 信息与控制工程学院,江苏 徐州 221116

煤矿工种 知识图谱 智能问答 意图识别 槽位提取

江苏省安全应急装备技术创新中心国家自然科学基金资助项目智慧矿山开放基金项目

BM2022013719721762021LH10

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(3)
  • 22