首页|基于改进DenseNet模型的滚动轴承故障诊断

基于改进DenseNet模型的滚动轴承故障诊断

扫码查看
滚动轴承是机械设备的关键部件,为了检测滚动轴承设备的正常运转并且提高识别轴承故障的准确率,提出一种优化变分模态分解(VMD)结合改进密集神经网络(DenseNet)的故障诊断模型方法。首先,使用多种群差分进化(MPDE)算法以局部极小包络熵为优化搜索的目标函数,对VMD方法中的相关参数进行优化搜索以获取最佳参数组合;然后,使用最佳参数组合优化的VMD方法分解处理原始滚动轴承的故障信号,并得到若干本征模态分量信号(IMFs);最后,通过引入通道注意力模块(MECANet)的改进密集神经网络模型对分解得到的IMF分量信号进行深层故障特征提取与识别,最终完成滚动轴承的故障诊断。实验结果表明:提出的优化VMD结合改进DenseNet模型对滚动轴承故障识别的准确率达到了99。23%,并且对比一些其他常见故障诊断模型的准确率有明显的提升,而且与先进的故障诊断模型对比其准确率存在较小差距,验证了此模型在滚动轴承故障诊断方面的有效性。
Fault Diagnosis of Rolling Bearing Based on Improved DenseNet Model
Rolling bearing is a key component of mechanical equipment.In order to detect the normal operation of rolling bearing equipment and improve the accuracy of identifying bearing faults,a fault diagnosis model method based on optimized variational mode decomposition(VMD)and improved dense neural network(DenseNet)is proposed.Firstly,multi-population differential evolution(MPDE)algorithm is used to search the parameters of VMD method with local minimum envelope entropy as the objective function to obtain the best parameter combination.Then,the original bearing fault signals are decomposed by using the VMD method of optimal pa-rameter combination optimization,and several eigenmode component signals(IMFs)are obtained.Finally,the improved dense neural network model with channel attention module(MECANet)is introduced to extract and identify the deep fault features of the decomposed IMF component signals,and the fault identification of the rolling bearing is completed.The experimental results show that the accuracy of the optimized VMD combined with the improved DenseNet model for fault identification of rolling bearings has reached 99.23%.Compared with some other common fault diagnosis models,the accuracy is significantly improved,and there is a small gap between it and the advanced fault diagnosis model,which verifies the effectiveness of this model in fault diagnosis of rolling bearings.

rolling bearingvariational mode decompositionmulti-population differential evolutiondense neural networkMECANetfault diagnosis

雷伟、廖光忠、裴浪

展开 >

武汉科技大学 计算机科学与技术学院,湖北 武汉 430065

武汉科技大学 智能信息处理与实时工业系统湖北省重点实验室,湖北 武汉 430065

武汉晴川学院 计算机科学与技术学院,湖北 武汉 430065

滚动轴承 变分模态分解 多种群差分进化 密集神经网络 MECANet 故障诊断

国家自然科学基金项目

U1836118

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(3)
  • 22