计算机技术与发展2024,Vol.34Issue(4) :76-81.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0012

基于改进YOLOv5的眼睛及瞳孔检测算法

Eye and Pupil Detection Algorithm Based on Improved YOLOv5

韩慧妍 范鑫茹
计算机技术与发展2024,Vol.34Issue(4) :76-81.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0012

基于改进YOLOv5的眼睛及瞳孔检测算法

Eye and Pupil Detection Algorithm Based on Improved YOLOv5

韩慧妍 1范鑫茹1
扫码查看

作者信息

  • 1. 中北大学计算机科学与技术学院,山西 太原 030051;机器视觉与虚拟现实山西省重点实验室,山西 太原 030051;山西省视觉信息处理及智能机器人工程研究中心,山西 太原 030051
  • 折叠

摘要

针对眼睛图像易受光照干扰导致的眼睛部位和瞳孔部位检测不准确及误检漏检的问题,提出基于改进YOLOv5的眼睛及瞳孔检测算法.首先,进行图像预处理,对比了三种图像增强方法,决定运用效果较好的CLAHE(限制对比度自适应直方图均衡化)方法进行图像增强,提高对比度;其次,在YOLOv5网络中引入Swin Transformer模块代替骨干网络的最后一个C3模块和三个预测头中的三个C3模块,提高网络的特征提取能力,提升眼睛部位的检测精度;最后,在YOLOv5网络中通过引入多尺度特征跨层融合机制的方法,增加两个目标预测头,降低网络对眼睛部位和瞳孔部位的漏检率.该文从ELSE标准数据集中的Data setⅩⅧ中选取了受光照程度不同的眼睛数据集2 400张,其中,1 600张为训练集,800张为测试集.实验结果表明,改进后的YOLOv5网络能检测出眼睛整体部位及完整的瞳孔部位,检测置信度也较高,mAP提高了 3.2百分点,Recall提高了 2.7百分点,且具有较好的实时性.

Abstract

;To address the issue of inaccurate and missed eye and pupil detection caused by the susceptibility of eye images to light interfer-ence,an improved YOLOv5 based eye and pupil detection algorithm is proposed.First of all,image pre-processing is carried out,and three image enhancement methods are compared.It is decided to use CLAHE(limited contrast Adaptive histogram equalization)method with good effect to enhance the image and improve the contrast;Secondly,the Swin Transformer module is introduced into YOLOv5 network to replace the last C3 module of the backbone network and three C3 modules in the three prediction heads,so as to improve the feature extraction ability of the network and improve the detection accuracy of eye parts;Finally,by introducing a multi-scale feature cross layer fusion mechanism in the YOLOv5 network,two target prediction heads are added to reduce the network's missed detection rate for eye and pupil regions.This article selected 2 400 eye datasets with different levels of illumination from the Data setⅩⅧ in the ELSE standard dataset,of which 1 600 were training sets and 800 were testing sets.The experimental results show that the improved YOLOv5 network can detect the entire part of the eye and the complete pupil,with a high detection confidence.The mAP has increased by 3.2 percentage points,the Recall has increased by 2.7 percentage points,and has good real-time performance.

关键词

眼睛及瞳孔检测/YOLOv5/CLAHE/Swin/Transformer/多尺度特征跨层融合机制

Key words

eye part detection/YOLOv5/CLAHE/Swin Transformer/Multi scale feature cross layer fusion mechanism

引用本文复制引用

基金项目

国家自然科学基金(62106238)

山西省科技重大专项"揭榜挂帅"项目(202201150401021)

山西省自然科学基金(202303021211153)

山西省科技成果转化引导专项(202104021301055)

出版年

2024
计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
参考文献量15
段落导航相关论文