首页|基于姿态引导特征增强的遮挡行人重识别

基于姿态引导特征增强的遮挡行人重识别

扫码查看
为解决遮挡行人重识别在特征提取过程中的特征丢失、特征匹配过程中的噪声干扰问题,提出了一种姿态引导的特征增强模型。首先,在关键点信息的辅助下,设计一种对称区域特征修复模块,将被遮挡区域丢失的局部特征替换为未遮挡区域的局部特征;其次,为挖掘局部特征的内在语义联系,设计一种相邻区域特征补偿模块,通过相邻区域特征修正局部特征表示;最后,通过引入广义均值池化对特征图的中心区域再次进行特征提取,提升行人特征向量的表达能力,以获得更加准确的全局特征。仿真实验表明,该模型在常见的全身数据集、半身数据集和遮挡数据集的Rank-1和mAP均优于绝大部分算法,其中在遮挡数据集Occluded-Duke、Occluded-REID上的Rank-l分别达到了 56。7%和72。4%。
Occluded Person Re-identification Based on Pose-guided Feature Enhancement
To address the problems of feature loss during feature extraction and noise interference during feature matching in occluded person re-identification,a pose-guided feature enhancement model is proposed.Firstly,with the assistance of key point information,a symmetrical region feature repair module is proposed to replace the locally lost features in the occluded region with the features in the non-occluded region.Secondly,to explore the semantic relationship between local features,an adjacent region feature compensation module is proposed to update the feature representation of each local feature by combining the features of adjacent regions.Finally,by leveraging the generalized mean pooling to extract features from the central region of the feature map,the expression ability of person feature vectors is improved to obtain more accurate global features.Simulation experiments show that the proposed model outperforms most algorithms in common holistic datasets,partial datasets,and occluded datasets in terms of Rank-1 and mAP,achieving 56.7%and 72.4%Rank-1 on Occluded-Duke and Occluded-REID datasets,respectively.

person re-identificationocclusionfeature repairfeature compensationgeneralized mean pooling

刘志刚、王淼、刘苗苗

展开 >

东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318

黑龙江省石油大数据与智能分析重点实验室,黑龙江 大庆 163318

行人重识别 遮挡 特征修复 特征补偿 广义均值池化

国家自然科学基金黑龙江省自然科学基金黑龙江省自然科学基金黑龙江省高等教育教学改革项目

42002138LH2020F003LH2021F004SJGY20210109

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(4)
  • 27