首页|因果图表征的网络攻击数据集构建

因果图表征的网络攻击数据集构建

扫码查看
高级可持续威胁攻击因其多阶段可持续的特性,已经成为现阶段网络攻击的主要形式。针对此类型攻击的检测、预测研究,不可避免地需要相关数据集的支撑。在构建数据集时,往往需要真实的网络与主机数据。但出于隐私与安全的考虑,很少有满足要求的开源数据集。现有的数据集也往往只提供原始的网络流和日志数据,对长时攻击上下文解析的缺乏导致单纯地利用神经网络进行数据包的恶性甄别和预测的实用性不足。为了解决这些问题,该文基于网络环境的真实攻击过程数据,构建并公布了一个基于因果图的网络攻击数据集。与传统的原始网络流和日志数据集相比,该数据集充分挖掘了攻击上下文中的因果关系,可以跨长时域对高级可持续威胁攻击进行建模,方便研究人员进行攻击检测与预测的研究。该数据集开源在https://github。com/GuangmingZhu/CausalGraphAPTDataset上。
Network Attack Dataset Construction Using Causal Graph
Advanced persistent threat attack has become the main form of network attack because of its multi-stage sustainable characteristics.Datasets are necessary for researches on the detection and prediction of this kind of attack.Real network and host data are superior when constructing datasets.However,few publicly available datasets can meet the requirements,due to the privacy and security issues.The available datasets often supply original network flows and system logs,but the absence of analysis on the long-term attack context results in that a straightforward using of deep neural networks to detect and predict malicious packets is not practical enough.In order to overcome these problems,a causal graph based network attack dataset is constructed and released,based on the real attack data of a network scene.Compared with the other datasets supplying original network flows and system logs simply,such dataset explores the causality of attach context deeply and can model the long-term advanced persistent threat attack.This makes the dataset more applicable for attack detection and prediction.The dataset is released at https://github.com/GuangmingZhu/CausalGraphAPTDataset.

network securitycausal graphadvanced persistent threat attackattack context

朱光明、冯家伟、卢梓杰、张向东、张锋军、牛作元、张亮

展开 >

西安电子科技大学计算机科学与技术学院,陕西西安 710071

西安电子科技大学通信工程学院,陕西西安 710071

中国电子科技集团公司第三十研究所,四川 成都 610041

网络安全 因果图 高级可持续威胁攻击 攻击上下文

国家重点研发计划

2020YFF0304900

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(4)
  • 16