首页|基于知识子图与注意力机制的在线课程推荐模型

基于知识子图与注意力机制的在线课程推荐模型

扫码查看
推荐系统可以帮助用户在海量的资源中筛选出满足其需求的项目,不断发展的推荐系统为在线教育提供了新的思路。在线课程资源推荐作为在线教育领域中的重要一环,目前存在课程资源过载和课程推荐结果缺乏可解释性的问题。对此,该文提出了一种基于知识子图与注意力机制的在线课程推荐模型,以利用知识子图进行推荐。有别于直接利用知识图谱进行推荐而忽略了知识表示不准确问题的模型,该模型首先采用Node2vec随机游走方法从知识图谱中提取连接用户-课程对的连通子图,然后通过分层注意网络对子图进行编码,以生成用于用户所需课程预测的子图嵌入,最后生成Top-N推荐课程列表,并给出模型的可解释性说明。为验证模型的有效性,以"中国大学MOOC(慕课)"上的数据为样本构建数据集,实验结果表明,相较于KGCN-PN、GAT、KGAT以及POCR模型,文中模型在NDCG、HR以及MRR评价指标上分别提升了 10。6%,9。41%,13。7%。
An Online Course Recommendation Model Integrating Knowledge Subgraph and Attention Mechanism
The recommendation system can help users filter out the items that meet their needs among the massive resources,and the evolving recommendation system provides new ideas for online education.As an important part of online education,online course resource recommendation currently has the problems of overload of course resources and lack of interpretability of course recommendation results.In this regard,we propose an online course recommendation model based on knowledge subgraph and attention mechanism to use knowledge subgraph for recommendation.Different from the model that directly uses the knowledge graph for recommendation and ignores the problem of inaccurate knowledge representation,the proposed model first uses the Node2vec random walk method to extract the connected subgraph connecting user-course pairs from the knowledge graph,and then encodes the subgraph through the hierarchical attention network to generate a subgraph embedding for the prediction of the courses required by the user.Finally,a list of Top-N recom-mended courses is generated,and an interpretability description of the proposed model is given.In order to verify the effectiveness of the proposed model,the data set on the"MOOC(MOOC)of Chinese universities"was used as the sample,and the experimental results show that compared with the KGCN-PN,GAT,KGAT and POCR,the proposed model improves the NDCG,HR and MRR evaluation indexes by 10.6%,9.41%and 13.7%,respectively.

knowledge subgraphhierarchical attention mechanismrecommendation systemonline coursesrandom walk

王烁、顾亦然、黄丽亚

展开 >

南京邮电大学 自动化、人工智能学院,江苏南京 210023

南京邮电大学智慧校园研究中心,江苏南京 210023

南京邮电大学电子与光学工程学院微电子学院,江苏南京 210023

知识子图 分层注意机制 推荐系统 在线课程 随机游走

国家自然科学基金

61977039

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(4)
  • 21