首页|基于Deepcrack网络的混凝土裂缝检测方法

基于Deepcrack网络的混凝土裂缝检测方法

扫码查看
混凝土结构裂缝对建筑安全构成了极大的潜在威胁,裂缝检测对建筑结构的维护具有重要意义,当前基于深度学习的裂缝检测针对提取裂缝细节的能力仍有待提高。因此,该文对Deepcrack网络进行优化,提出了基于金字塔分割注意力和全局上下文的混凝土裂缝检测算法PG-Deepcrack。首先,在编码器中提出双卷积-注意力并行模块,增加金字塔分割注意力分支为卷积层提供更丰富的多尺度裂缝信息;其次,为了捕获长距离依赖关系,并行模块操作后引入全局上下文模块,进一步提升网络对裂缝细节的表达能力;最后,在特征融合阶段利用全维动态卷积和GELU激活函数,对编解码器特征层联级融合,使网络更全面地保留不同尺寸的裂缝信息并提高模型的泛化性能。为验证网络模型的有效性,在Deepcrack数据集上与7个网络模型进行对比试验,所提出的网络表现了最佳性能,IoU达到了 72。78%。
Concrete Crack Detection Method Based on Deepcrack Network
Concrete structural cracks pose a great potential threat to building safety,and crack detection is of great significance to the ma-intenance of building structures.The current deep learning-based crack detection for extracting crack details still needs to be improved.Therefore,we optimize the Deepcrack network and propose a concrete crack detection algorithm PG-Deepcrack based on pyramid split at-tention and global context.Firstly,a dual-convolution-attention parallel block is proposed in the encoder to add a pyramid-split attention branch to provide richer multi-scale crack information for the convolutional layer.Secondly,in order to capture long-distance dependencies,a global context block is introduced after the operation of the parallel block,which further improves the ability of network to express the crack details.Finally,the omni-dimensional dynamic convolution and the GELU activation function are utilized in the feature fusion stage to cascade-level fusion of codec features,so that the network retains the information of different sizes of cracks in a more comprehensive way and improves the generalization performance of the model.To validate the effectiveness of the network model,a comparative test is conducted with seven network models on the DeepCrack dataset,and the proposed network exhibits the best performance with an IoU of 72.78%.

image segmentationcrack detectionpyramid split attentionglobal contextomni-dimensional dynamic convolution

武斌、马玉静、刘宇航、赵洁

展开 >

天津城建大学计算机与信息工程学院,天津 300384

图像分割 裂缝检测 金字塔分割注意力 全局上下文 全维动态卷积

天津市科技计划科技重大专项天津市重点研发计划科技支撑重点项目天津市企业科技特派员项目

14ZCZDGX0086819YFZCGX0013019JCTPJC47200

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(4)
  • 27