计算机技术与发展2024,Vol.34Issue(5) :141-148.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0052

基于贝叶斯估计和群体智能的无人机轨迹优化

UAV Trajectory Optimization Based on Bayesian Estimation and Swarm Intelligence

丁汝妍 李欢 莫欣岳 吴灿 李昕雨
计算机技术与发展2024,Vol.34Issue(5) :141-148.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0052

基于贝叶斯估计和群体智能的无人机轨迹优化

UAV Trajectory Optimization Based on Bayesian Estimation and Swarm Intelligence

丁汝妍 1李欢 1莫欣岳 1吴灿 2李昕雨1
扫码查看

作者信息

  • 1. 海南大学 网络空间安全学院(密码学院),海南 海口 570228
  • 2. 海南大学 信息与通信工程学院,海南 海口 570228
  • 折叠

摘要

为提高无人机的定位精度与队形调整效率,提出了基于贝叶斯估计的定位模型和基于群体智能算法的队形调整方法.首先,考虑实际情况中的测量噪声影响,在定弦定角模型中引入贝叶斯最大后验概率得到新的定位模型.然后,针对粒子群算法易陷入局部最优的问题,结合模拟退火算法提出改进的队形调整算法.仿真结果表明:提出的定位模型对圆形(锥形)编队的误差率比初始模型降低72.8%(49.2%);改进的队形调整算法对圆形(锥形)编队的误差率相对于原始算法和遗传算法与高斯伪谱法相嵌套的方法分别降低了37.1%(27.0%)和24.7%(19.9%),收敛迭代次数分别降低了12.5%(20%)与12.5%(4.8%).实验结果验证了提出的优化方案具有较高的精度和计算效率.

Abstract

To improve the localization accuracy and formation adjustment efficiency of UAVs,a positioning model based on Bayesian esti-mation and a formation adjustment method based on a swarm intelligence algorithm is proposed.Firstly,considering the influence of measurement noise in the actual situation,a new localization model is obtained by introducing maximum a posteriori estimation into the fixed string fixed angle model.Then,for the problem that the particle swarm algorithm tends to fall into local optimization,an improved queue adjustment algorithm is proposed in combination with a simulated annealing algorithm.The simulation results show that the error rate of the proposed localization model for circular(conical)formation is72.8%(49.2%)lower than that of the initial model.The error rate of the improved formation adjustment algorithm for circular(conical)formation is 37.1%(27.0%)and 24.7%(19.9%)lower than that of the original algorithm and the combined method genetic algorithm and Gauss pseudo spectral method respectively,while the number of convergence iterations decreases by 12.5%(20%)and 12.5%(4.8%)respectively.The experimental results verify the proposed optimization scheme's high accuracy and computational efficiency.

关键词

无人机轨迹优化/无源定位/贝叶斯优化/粒子群算法/模拟退火算法

Key words

unmanned aerial vehicles trajectory optimization/passive localization/Bayesian optimization/particle swarm algorithm/simulated annealing algorithm

引用本文复制引用

基金项目

教育部产学合作协同育人项目(220902070162538)

中国高等教育学会高等教育科学研究规划课题(22LH0409)

海南省自然科学基金(623RC455)

海南省自然科学基金(623RC457)

海南大学科研启动基金项目(KYQDZR-22096)

海南大学科研启动基金项目(KYQDZR-22097)

海南大学教育教学改革研究项目(hdjy2364)

出版年

2024
计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
参考文献量15
段落导航相关论文