首页|基于知识蒸馏的图像异常检测方法

基于知识蒸馏的图像异常检测方法

扫码查看
图像异常检测中模型的浅层架构对细微差异有较弱的检测能力,寻找有效的特征表示来区分正负样本是一个挑战。为此,提出了一种新的基于知识蒸馏的图像异常检测方法。该方法提出一种新的知识蒸馏框架,由T-S模型和单类嵌入模块组成,通过迁移学习泛化新异常。首先,高容量的wide_resnet50_2 网络作为教师网络,通过单类嵌入模块在最低层次将多尺度特征聚合,保留普遍性和空间分辨率,增强了蒸馏模型对异常的表示能力。其次,嵌入注意力机制的工作上,在保持网络结构完整性的同时,为预训练参数的有效利用提供了新的视角,提高了模型的性能。最后,提出了一种新的异常表示方法,计算每对张量的余弦相似损失,累计多尺度异常得到异常分数图。实验结果表明,该方法在MVTec数据集的纹理和物体类别上,平均AUC值分别达到了97。8%和95。5%,对图像中的细微异常具有优秀的检测能力。
An Image Anomaly Detection Method Based on Knowledge Distillation
The shallow architecture of the model in image anomaly detection has a weak ability to detect subtle differences,and it is a challenge to find effective feature representations to distinguish between positive and negative samples.To solve this problem,a new image anomaly detection method based on knowledge distillation was proposed.This method proposes a new knowledge distillation framework,which consists of a T-S model and a single-class embedding module,and generalizes new anomalies through transfer learning.Firstly,the high-capacity wide_resnet50_2 network as a teacher network aggregates multi-scale features at the lowest level through a single-class embedding module,retains the universality and spatial resolution,and enhances the ability of the distillation model to represent anomalies.Secondly,the work of embedding attention mechanism provides a new perspective for the effective use of pre-trained parameters and improves the performance of the model while maintaining the integrity of the network structure.Finally,a new a-nomaly representation method is proposed,which calculates the cosine similarity loss of each pair of tensors,and accumulates multi-scale anomalies to obtain the anomaly score graph.Experimental results show that the proposed method achieves an average AUC value of 97.8%and95.5%on the texture and object class of the MVTec dataset,respectively,and has excellent detection ability for subtle anomalies in the image.

image anomaly detectionresidual networksknowledge distillationattention mechanismstransfer learning

王纪康、赵旭俊

展开 >

太原科技大学 计算机科学与技术学院,山西 太原 030024

图像异常检测 残差网络 知识蒸馏 注意力机制 迁移学习

山西省基础研究计划资助项目

202303021221142

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(5)
  • 21