首页|融合全局上下文关联特征的细粒度图像分类

融合全局上下文关联特征的细粒度图像分类

扫码查看
针对现有基于注意力机制的细粒度图像分类模型在提取图像特征时,过于关注图像目标的某个或某些局部特征,而忽略不同局部特征之间、局部特征和全局特征之间的关联关系的问题,提出了一种融合全局上下文关联特征的细粒度图像分类方法。该方法设计了区域感知模块,通过从图像中获得不同区域的区域特征感知编码,实现对图像中目标的一个或多个局部区域的特征表示;基于加性注意力机制,设计了全局注意力感知模块和上下文注意力感知模块,通过构建各局部特征之间、局部特征和整体特征之间的关联性,实现对遮挡目标的关键部位特征的更有效表示。通过在细粒度图像分类数据集Stanford Cars、FGVC Aircraft、CUB-200-2011 以及自建的FGVC-LAV数据集上的验证评估表明,该方法可以在提取图像局部特征的同时,有效挖掘局部特征和局部特征之间、局部特征和全局特征之间的关联关系,提高细粒度图像分类准确率。
Fine-grained Image Classification Based on Fusion of Global Contextual Features
A fine-grained image classification method that integrates global contextual features is proposed to address the problem of existing attention mechanism based fine-grained image classification models that overly focus on one or some local features of the image target when extracting image features,while ignoring the correlation between different local features and between local and global features.In this method,a region awareness module is designed to realize the feature representation of one or more local regions of the target in the image by obtaining regional feature perception coding of different regions from the image.Based on the additive attention mechanism,the global attention perception module and the context attention perception module are designed.By constructing the correlation between local features and local features as well as between the local features and the whole features,the key parts of the obscured object can be represented more effectively.Through validation and evaluation on fine-grained image classification datasets such as Stanford Cars,FGVC Aircraft,CUB-200-2011,and the self built FGVC-LAV dataset,it was verified that the proposed method can effectively mine the correlation between local features and local features,as well as between local features and global features,while extracting local features from images,thereby improving the accuracy of fi-ne-grained image classification.

fine grainedimage classificationattentionlocal featureassociation feature

苗壮、王培龙、崔浩然、王昱菲、王家宝

展开 >

陆军工程大学 指挥控制工程学院,江苏 南京 210007

奇安信科技集团股份有限公司 军团CBG,北京 100044

细粒度 图像分类 注意力 局部特征 关联特征

江苏省自然科学基金

BK20200581

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(6)
  • 35