首页|虚拟对抗训练的跨域块对比半监督细胞核分割

虚拟对抗训练的跨域块对比半监督细胞核分割

扫码查看
针对目前细胞核的半监督对比学习语义分割质量高度依赖于平滑、正确伪标签的预测等问题,提出了虚拟对抗训练的跨域块对比学习半监督细胞核语义分割方法。该方法将虚拟对抗训练(VAT)方法融入到跨域块对比学习半监督细胞核语义分割模型中用以提升网络预测伪标签的平滑度与准确度,并使用像素自加权的一致性正则化损失替换原有的人工设置高置信度阈值的一致性正则化损失,对图像中各像素的损失自加权,正确地对网络预测的伪标签进行有效利用。实验结果表明,在有标签图片比例为1/32,1/16 和1/8 下,该方法在MoNuSeg数据集上的医学图像分割评估指标Dice系数和Jaccard系数分别较CDCL模型提升了0。96 百分点和1。11 百分点,0。74 百分点和0。85 百分点,1。40 百分点和2。00百分点,在DSB数据集上的Dice系数和Jaccard系数分别较CDCL模型提升了1。69 百分点和2。27 百分点,1。47 百分点和2。19 百分点,1。24 百分点和1。77 百分点。
Virtual Adversarial Training for Cross Domain Patch Contrastive Learning for Semi-supervised Cellular Nuclear Semantic Segmentation
To solve the problem that the semantic segmentation quality of semi-supervised contrastive learning is highly dependent on the prediction of smooth and correct pseudo labels,a semi-supervised nuclear semantic segmentation method based on cross-domain patch contrastive learning for virtual adversarial training is proposed.The proposed method integrates virtual adversarial training(VAT)into the cross-domain patch contrastive learning semi-supervised cellular nuclear semantic segmentation model to improve the smoothness and accuracy of the network prediction of pseudo label,and the consistency regularization loss of pixel self-weighting is used to replace the o-riginal consistency regularization loss of manually set high confidence threshold,and the loss of each pixel in the image is self-weighted for correct and effective use of pseudo label for network prediction.The experimental results show that at the ratio of 1/32,1/16 and 1/8 of the labeled images,on the MoNuSeg dataset,the Dice coefficient and Jaccard coefficient of the proposed method improved by 0.96 per centage points and1.11 per centage points,0.74 per centage points and0.85 per centage points,1.40 per centage points and 2.00 per centage points,respectively,compared with the CDCL model.On DSB dataset,Dice coefficient and Jaccard coefficient increased by 1.69 per centage points and2.27 per centage points,1.47 per centage points and2.19 per centage points,1.24 per centage points and1.77 per centage points,respectively,compared with CDCL model.

cellular nuclear semantic segmentationsemi-supervised cross domain patch contrastive learningpseudo labelvirtual adversarial traininguncertainty estimation

陈子铭、宣士斌

展开 >

广西民族大学 人工智能学院,广西 南宁 530006

广西混杂计算与集成电路设计分析重点实验室,广西 南宁 530006

细胞核语义分割 半监督跨域块对比学习 伪标签 虚拟对抗训练 不确定性估计

国家自然科学基金国家自然科学基金

6186600362062011

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(6)
  • 15