计算机技术与发展2024,Vol.34Issue(6) :140-147.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0080

融合多策略改进的克隆选择算法

Improved Clonal Selection Algorithm Fusing Multiple Strategies

张文豪 杨超 彭旭 王道维 范波
计算机技术与发展2024,Vol.34Issue(6) :140-147.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0080

融合多策略改进的克隆选择算法

Improved Clonal Selection Algorithm Fusing Multiple Strategies

张文豪 1杨超 2彭旭 1王道维 1范波3
扫码查看

作者信息

  • 1. 湖北大学 网络空间安全学院,湖北 武汉 430062
  • 2. 湖北大学 计算机与信息工程学院,湖北 武汉 430062;智慧政务与人工智能应用湖北省工程研究中心,湖北 武汉 430062
  • 3. 武汉大学 科学技术发展研究院,湖北 武汉 430072
  • 折叠

摘要

针对克隆选择算法(CSA)解决复杂优化问题时存在的效率低下、收敛速度慢以及容易陷入局部最优等不足,提出了一种融合多策略改进的克隆选择算法(MSICSA).首先,引入Sobol序列初始化种群,丰富种群多样性,并提高算法整体稳定性;其次,引入正余弦优化策略加强算法全局搜索能力,避免陷入局部最优而导致算法停滞;最后,引入动态浓度调节策略,调节算法在不同时期搜索空间内的抗体浓度,控制算法加强前期全局搜索以及后期局部寻优能力,并提高算法收敛速度.文中利用12 种CEC测试函数及4 种算法对MSICSA进行测试及对比,消融实验证明了改进策略的有效性,扰动实验验证了文中算法的稳定性与鲁棒性,对比仿真以及几项实验均表明MSICSA能够有效提升收敛速度和寻优精度,并提高跳出局部最优的能力.

Abstract

Aiming at the shortcomings of clonal selection algorithm(CSA)in solving complex optimization problems,such as low efficiency,slow convergence speed and easy to fall into local optimum,an improved clonal selection algorithm based on multi-strategy(MSICSA)was proposed.Firstly,the Sobol sequence was introduced to initialize the population,which enriched the diversity of the population and improved the overall stability of the algorithm.Secondly,the sine cosine optimization strategy was introduced to enhance the global search ability of the algorithm to avoid falling into local optimum and causing the stagnation of the algorithm.Finally,a dynamic adaptive concentration adjustment strategy was introduced to adjust the antibody concentration in the search space at different periods of the algorithm,which strengthened the global search ability in the early stage and the local optimization ability in the later stage,and improved the convergence speed of the algorithm.The ablation experiment shows the effectiveness of the improved strategy,and the perturbation experiment verifies the stability and robustness of the proposed algorithm.The comparative simulation show that MSICSA can effectively improve the convergence speed and optimization accuracy,and improve the ability to jump out of local optimum.

关键词

克隆选择算法/正余弦优化策略/浓度调节策略/Sobol序列/抗体变异

Key words

clonal selection algorithm/sine cosine optimization strategy/concentration regulation strategy/Sobol sequence/antibody varia-tion

引用本文复制引用

基金项目

国家自然科学基金(61977021)

湖北省重点研发计划(2021BAA184)

出版年

2024
计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
参考文献量5
段落导航相关论文