首页|基于双融合图注意力网络多模态知识图谱链路预测

基于双融合图注意力网络多模态知识图谱链路预测

扫码查看
知识图谱链路预测是一种根据知识图谱已存在的事实去预测缺失事实的任务,旨在解决知识图谱不完整性问题。但是现有的知识图谱链路预测有一定的缺陷,传统方法只使用单一的数据模态,没有充分利用不同数据模态的丰富信息,并且在图神经网络中孤立地看待实体和关系,没有考虑到不同邻域实体关系权重的不同。为了解决上述缺陷,提出了基于双融合图注意力网络的多模态知识图谱链路预测模型。首先,使用了图像、文本和属性3 种模态,同时为了保证数据模态特征的一致性和互补性,设计了一个基于早期融合和晚期融合结合的双融合机制对多模态信息进行融合;然后,为了加强知识图中实体关系的融合以及邻域关系,同时考虑了实体以及关系的多样性,融合了实体表示和关系表示,并通过图注意力网络进行聚合以加强实体的特征表示。通过在4 个公开的数据集FB15K-237、WN18RR、DB15K以及YAGO15K进行模拟实验,结果表明,提出的多模态知识图谱链路预测方法具有较好的性能。
Multi-modal Knowledge Graph Link Prediction Based on Dual Fusion and Graph Attention Networks
Knowledge graph link prediction aims to predict missing facts within the knowledge graph,addressing the issue of knowledge graph incompleteness.However,existing knowledge graph link prediction methods exhibit certain limitations.Traditional methods are re-stricted to utilizing a single data modality,thereby missing the opportunity to fully leverage the wealth of information provided by diverse data modalities.Moreover,in the context of graph neural networks,entities and relationships are frequently treated as independent elements,often overlooking the varying significance of entity relationships within distinct neighborhoods.To address these problems,a multi-modal knowledge graph link prediction model based on dual-fusion graph attention network is proposed.Firstly,three modalities of image,text and attribute were incorporated.To ensure consistency and synergy among data modal features,a dual-fusion mechanism that combines early and late fusion strategies was devised for multi-modal data amalgamation.To strengthen the fusion of entity relationships and neighborhood relationships in the knowledge graph,consideration is given to the diversity of entities and relationships.The fusion of entity and relationship representations is followed by aggregation through the graph attention network,thereby enhancing the feature representation of the entities.By conducting simulation experiments on four public datasets,specifically FB15K-237,WN18RR,DB15K,and YAGO15K,the results demonstrate the strong performance of the proposed multi-modal knowledge graph link prediction method.

multi-modalknowledge graphlink predictionmodel fusiongraph attention network

张冬、梁平、顾进广

展开 >

武汉科技大学 计算机科学与技术学院,湖北 武汉 430065

智能信息处理与实时工业系统湖北省重点实验室,湖北 武汉 430065

多模态 知识图谱 链路预测 模态融合 图注意力网络

国家社会科学基金重大项目科技创新2030-"新一代人工智能"重大项目国家重点研发计划

11&ZD1892020AAA01085002022YFC3300800

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(7)