首页|基于改进YOLO算法的无人机图像草原火灾检测研究

基于改进YOLO算法的无人机图像草原火灾检测研究

扫码查看
草原火灾一旦发生,受风力、地势等因素的影响迅速向四周无规则蔓延,形成面积不断扩大的条状燃烧带。为了提高草原火灾检测效率,结合无人机拍摄草原火灾的图像特征,研究基于改进YOLO算法的草原火灾检测方法。首先,针对火灾区域狭长、火灾区域占比小的特点,对YOLO算法的Neck部分进行优化,提出一种具有全链接结构的特征提取网络FC-FP Neck,使语义特征和定位特征充分融合,提高网络的特征提取能力;其次,结合阈值分割技术提出一种改进的自适应加权损失函数,提升模型的收敛速度,同时解决火灾检测敏感度不足,容易造成误检的问题。在公开小目标检测数据集AI-TOD上测试改进算法的可行性,平均准确率提高了7。28%,平均精度提高了12。46%;在自建草原火灾数据集上平均精度达到了90。24%,平均准确率达到了87。33%。实验表明改进后的算法提高了草原火灾检测效率。
Research on Grassland Fire Detection Based on Improved YOLO Algorithm for Unmanned Aerial Vehicle Images
Once a grassland fire occurs,it spreads rapidly and irregularly around due to the influence of wind,terrain and other factors,forming a burning strip with an expanding area.In order to improve the efficiency of grassland fire detection,combining with the image characteristics of grassland fire captured by unmanned aerial vehicle(UAV),we study the grassland fire detection method based on the improved YOLO algorithm.Firstly,for the characteristics of long and narrow fire area and small percentage of fire area,the Neck part of YOLO algorithm is optimized,and a feature extraction network FC-FP Neck with full link structure is proposed,so that the semantic features and localization features are fully integrated and the feature extraction ability of the network is improved.Secondly,an improved adaptive weighted loss function is proposed by combining the threshold segmentation technology to improve the model's convergence speed,and at the same time,solve the problem of insufficient sensitivity of fire detection,which is easy to cause false detection.The feasibility of the improved algorithm is tested on the public small target detection dataset AI-TOD,and the average accuracy is improved by 7.28%and the average precision is improved by 12.46%;the average precision on the self-constructed grassland fire dataset reaches 90.24%and the average accuracy reaches 87.33%.The experiment shows that the improved algorithm improves the efficiency of grassland fire detection.

grassland fireYOLO algorithmfeature pyramid networkthreshold segmentationadaptive weight loss function

刘志强、张朝阳、王昱、张旭

展开 >

内蒙古工业大学 信息工程学院,内蒙古 呼和浩特 010080

内蒙古建筑职业技术学院,内蒙古 呼和浩特 010020

草原火灾 YOLO算法 特征金字塔网络 阈值分割 自适应加权损失函数

国家自然科学基金内蒙古自治区科技计划项目内蒙古自治区自然科学基金

619620442021GG02502021MS06029

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(7)