首页|基于协调注意力机制的轻量级YOLOv4零件检测

基于协调注意力机制的轻量级YOLOv4零件检测

扫码查看
针对零件自动检测任务在复杂工况下,如零件堆叠粘连、有杂物干扰等,存在实时性差、硬件资源占用大等问题,提出一种基于轻量级YOLOv4网络的零件检测方法。采用MobileNeXt代替CSPDarkNet53作为主干特征提取网络(backbone),并在每个卷积模块中添加协调注意力机制,用于增强特征层的语义表达能力;提出一种Fused-Sandglass模块插入到浅层的backbone中,提高网络的推理速度;网络训练方面引入渐进式训练方法和focal loss损失函数,提升训练速度,并且有效缓解正负样本失衡的问题。实验结果表明,该方法在15种零件的检测任务中能够保持和YOLOv4网络相近的准确率,但参数量大小仅为其20%,推理速度达到了 43。7 fps,能够满足实际生产的需求。
Part Detection Based on Coordinated Attention Mechanism Lightweight YOLOv4
In order to solve the slow response speed,high hardware resource occupation and other issues of automatic detection tasks under such complex conditions as stacked adhesions and debris interference,a part detection method based on lightweight YOLOv4 network is proposed.MobileNeXt is used to replace CSPDarkNet53 as backbone,and coordinated attention mechanism is added in each convolutional module to enhance the semantic expression ability of feature maps.A Fused-Sandglass module is proposed for plugging into shallow backbone,which can improve the inference speed of network.In the aspect of network training,the progressive training method and focal loss function are introduced to improve the training speed and effectively alleviate the imbalance between positive and negative samples.Experimental results show that the proposed method can maintain the accuracy similar to that of YOLOv4 network in 15 parts detection tasks,and the number of parameters is only 20%of it.The inference speed can reach 43.7 fps,which can meet the demand of actual production.

deep learningcoordinating attention mechanismpart detectionYOLOv4 networkMobileNeXt network

朱文博、陈龙飞、余琦

展开 >

上海理工大学机械工程学院,上海 200093

深度学习 协调注意力机制 零件检测 YOLOv4网络 MobileNeXt网络

国家自然科学基金

52075340

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(8)