首页|改进YOLOv7的钢材表面缺陷检测模型

改进YOLOv7的钢材表面缺陷检测模型

扫码查看
在钢材生产过程中会出现各种的瑕疵缺陷,影响其使用寿命。针对在钢材生产过程中检测表面缺陷效率低下的问题,提出了一种基于YOLOv7改进的钢材表面缺陷检测模型。该模型改进耦合检测头为非对称多级通道压缩解耦头,解决不同检测任务之间的冲突,减少前向传播过程中目标置信度任务的特征丢失;设计轻量化FCSP block增强主干网络特征提取能力和颈部网络特征融合能力,提高模型对缺陷的定位能力的同时显著提升了检测速度;为进一步丰富小目标浅层特征增强其表达能力,加入可学习参数以促进动态特征融合,促进网络学习多样化特征。在NEU-DET数据集上的实验结果表明,相较于原YOLOv7模型,改进后的模型mAP提高了 8。8百分点,FPS提高了 11。6,验证了该模型在检测精度和检测速度上都有所提升;在光照减弱后的NEU-DET数据集和GC10-DET数据集分别做通用性对比实验,结果表明该模型能有效地应用于工业中的钢材表面缺陷检测任务。
Detection Model of Steel Surface Defect Based on Improved YOLOv7
In the process of steel production,there will be various defects and flaws,which will affect its service life.To address the issue of low efficiency in detecting surface defects during the steel production process,a steel surface defect detection model based on improved YOLOv7 is proposed.The model introduces an improved coupled detection head called the asymmetric multi-level channel compression decoupling head to resolve conflicts between different detection tasks and reduce feature loss in the target confidence task during forward propagation.A lightweight FCSP block is designed to enhance the feature extraction capability of the backbone network and the feature fusion capability of the neck network,improving the model's defect localization ability while significantly increasing detection speed.To further enrich the expression capability of shallow features for small targets,learnable parameters are introduced to promote dynamic feature fusion,facilitating the network in learning diverse features.Experimental results on the NEU-DET dataset demonstrate that the improved model achieves an 8.8 percentage point increase in mAP and an 11.6 FPS improvement compared to the original YOLOv7 model,validating enhancements in both detection accuracy and speed.Generalization experiments on the NEU-DET dataset under reduced lighting conditions and the GC10-DET dataset confirm the model's effectiveness in industrial steel surface defect detection tasks.

steeldefect detectionYOLOv7decoupling headfeature fusion

李思思、葛华勇

展开 >

东华大学信息科学与技术学院,上海 201620

钢材 缺陷检测 YOLOv7 解耦头 特征融合

国家自然科学基金

62372100

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(8)