首页|基于比例池化的RGB图像语义分割网络

基于比例池化的RGB图像语义分割网络

扫码查看
针对传统的金字塔多级特征融合算法进行语义分割时存在的特征图有效信息弱和噪声叠加效应等问题,提出一种基于比例池化的混合注意力机制。首先在主干网络特征输出处引入比例池化注意力模块对输入特征图进行不同程度的语义信息抽取和特征降噪,突出特征图有效特征信息占比,随后将不同内核的池化结果作为级联金字塔结构的输入特征,对降噪后的多尺度特征进行融合,平滑图像噪声实现特征二次降噪和小目标物体语义信息增强。实验在Pascal VOC 2012数据集上验证了该方法在分割领域上的有效性,并采用平均像素准确率(mPA)和平均交并比(mIoU)作为模型的性能评估指标。实验结果表明,基于比例池化的金字塔网络在mPA和mIoU上达到了 90。19%和79。92%,优于对比的语义分割方法。
RGB Image Semantic Segmentation Net Based on Proportional Pooling
Aiming at the problems of weak effective information of feature map and noise superposition effect of feature map noise when the traditional pyramid feature fusion segmentation algorithm performs semantic segmentation,a hybrid attention mechanisms based on proportional pooling is proposed.Firstly,the proportional pooling attention module is introduced at the feature output of the backbone network to extract the semantic information and denoise the input feature map to different degrees.and the proportion of effective feature information of the feature map is highlighted,and then the pooling results of different kernels are used as the input features of the cascade pyramid structure,and the multi-scale features after noise reduction are fused to realize the secondary feature reduction and the semantic information enhancement of small target objects.The effectiveness of the proposed method in the segmentation domain is verified on the Pascal VOC 2012 dataset,and the average pixel accuracy(mPA)and average intersection union ratio(mIoU)are used as the performance evaluation indicators of the model.Experimental results show that the pyramid network based on proportional pooling reaches 90.19%and 79.92%on mPA and mIoU,which is better than that of the comparative semantic segmentation methods.

semantic segmentationproportional poolingpyramid structuremulti-scale feature fusionfeature denoising

李顺新、陈飞飞

展开 >

武汉科技大学计算机科学与技术学院,湖北武汉 430065

湖北智能信息处理与实时工业系统重点实验室,湖北武汉 430065

武汉科技大学大数据科学与工程研究院,湖北武汉 430065

语义分割 比例池化 金字塔结构 多尺度特征融合 特征降噪

国家自然科学基金重点项目

U1803262

2024

计算机技术与发展
陕西省计算机学会

计算机技术与发展

CSTPCD
影响因子:0.621
ISSN:1673-629X
年,卷(期):2024.34(8)